DNA methylation profiles reveal sex-specific associations between gestational exposure to ambient air pollution and placenta cell-type composition in the PRISM cohort study

Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, et al. Air pollution and children’s health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med. 2021;26(1):72.

Article  PubMed  PubMed Central  Google Scholar 

Bekkar B, Pacheco S, Basu R, DeNicola N. Association of air pollution and heat exposure with preterm birth, low birth weight, and stillbirth in the US: a systematic review. JAMA Netw Open. 2020;3(6):e208243.

Article  PubMed  PubMed Central  Google Scholar 

Saenen ND, Martens DS, Neven KY, Alfano R, Bové H, Janssen BG, et al. Air pollution-induced placental alterations: an interplay of oxidative stress, epigenetics, and the aging phenotype? Clin Epigenetics. 2019;11(1):124.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vlahos A, Mansell T, Saffery R, Novakovic B. Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome. PLoS Genet. 2019;15(8):e1008236.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nachman RM, Mao G, Zhang X, Hong X, Chen Z, Soria CS, et al. Intrauterine inflammation and maternal exposure to ambient PM2.5 during preconception and specific periods of pregnancy: the Boston birth cohort. Environ Health Perspect. 2016;124(10):1608–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue H, Ji X, Zhang Y, Li G, Sang N. Gestational exposure to PM(2.5) impairs vascularization of the placenta. Sci Total Environ. 2019;665:153–61.

Article  CAS  PubMed  Google Scholar 

Kaur K, Lesseur C, Deyssenroth MA, Kloog I, Schwartz JD, Marsit CJ, et al. PM(2.5) exposure during pregnancy is associated with altered placental expression of lipid metabolic genes in a US birth cohort. Environ Res. 2022;2(11):113066.

Article  Google Scholar 

Deyssenroth MA, Rosa MJ, Eliot MN, Kelsey KT, Kloog I, Schwartz JD, et al. Placental gene networks at the interface between maternal PM(2.5) exposure early in gestation and reduced infant birthweight. Environ Res. 2021;199:111342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao Y, Wang P, Zhou Y, Xia B, Zhu Q, Ge W, et al. Prenatal fine particulate matter exposure, placental DNA methylation changes, and fetal growth. Environ Int. 2021;147:106313.

Article  CAS  PubMed  Google Scholar 

Luyten LJ, Saenen ND, Janssen BG, Vrijens K, Plusquin M, Roels HA, et al. Air pollution and the fetal origin of disease: a systematic review of the molecular signatures of air pollution exposure in human placenta. Environ Res. 2018;166:310–23.

Article  CAS  PubMed  Google Scholar 

Cowell W, Colicino E, Zhang X, Ledyard R, Burris HH, Hacker MR, et al. Spatially and temporally resolved ambient PM(2.5) in relation to preterm birth. Toxics. 2021;9(12):352.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Enquobahrie DA, MacDonald J, Hussey M, Bammler TK, Loftus CT, Paquette AG, et al. Prenatal exposure to particulate matter and placental gene expression. Environ Int. 2022;165:107310.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lakshmanan A, Chiu YH, Coull BA, Just AC, Maxwell SL, Schwartz J, et al. Associations between prenatal traffic-related air pollution exposure and birth weight: modification by sex and maternal pre-pregnancy body mass index. Environ Res. 2015;137:268–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosofsky AS, Fabian MP, Ettinger de Cuba S, Sandel M, Coleman S, Levy JI, et al. Prenatal ambient particulate matter exposure and longitudinal weight growth trajectories in early childhood. Int J Environ Res Public Health. 2020;17(4):1444.

Article  PubMed  PubMed Central  Google Scholar 

Brunst KJ, Sanchez-Guerra M, Chiu YM, Wilson A, Coull BA, Kloog I, et al. Prenatal particulate matter exposure and mitochondrial dysfunction at the maternal-fetal interface: effect modification by maternal lifetime trauma and child sex. Environ Int. 2018;112:49–58.

Article  CAS  PubMed  Google Scholar 

Braun AE, Mitchel OR, Gonzalez TL, Sun T, Flowers AE, Pisarska MD, et al. Sex at the interface: the origin and impact of sex differences in the developing human placenta. Biol Sex Differ. 2022;13(1):50.

Article  PubMed  PubMed Central  Google Scholar 

Buckberry S, Bianco-Miotto T, Bent SJ, Dekker GA, Roberts CT. Integrative transcriptome meta-analysis reveals widespread sex-biased gene expression at the human fetal-maternal interface. Mol Hum Reprod. 2014;20(8):810–9.

Article  PubMed  PubMed Central  Google Scholar 

Inkster AM, Yuan V, Konwar C, Matthews AM, Brown CJ, Robinson WP. A cross-cohort analysis of autosomal DNA methylation sex differences in the term placenta. Biol Sex Differ. 2021;12(1):38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bozack AK, Colicino E, Just AC, Wright RO, Baccarelli AA, Wright RJ, et al. Associations between infant sex and DNA methylation across umbilical cord blood, artery, and placenta samples. Epigenetics. 2021;17(10):1080–97.

Article  PubMed  PubMed Central  Google Scholar 

Cowell W, Deyssenroth M, Chen J, Wright RJ. Maternal stress in relation to sex-specific expression of placental genes involved in nutrient transport, oxygen tension, immune response, and the glucocorticoid barrier. Placenta. 2020;96:19–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turco MY, Moffett A. Development of the human placenta. Development. 2019;146(22):163428.

Article  Google Scholar 

Campbell KA, Colacino JA, Puttabyatappa M, Dou JF, Elkin ER, Hammoud SS, et al. Placental cell type deconvolution reveals that cell proportions drive preeclampsia gene expression differences. Commun Biol. 2023;6(1):264.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan V, Hui D, Yin Y, Peñaherrera MS, Beristain AG, Robinson WP. Cell-specific characterization of the placental methylome. BMC Genomics. 2021;22(1):6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dieckmann L, Cruceanu C, Lahti-Pulkkinen M, Lahti J, Kvist T, Laivuori H, et al. Reliability of a novel approach for reference-based cell type estimation in human placental DNA methylation studies. Cell Mol Life Sci. 2022;79(2):115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghazi T, Naidoo P, Naidoo RN, Chuturgoon AA. Prenatal air pollution exposure and placental dna methylation changes: implications on fetal development and future disease susceptibility. Cells. 2021;10(11):3025.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van den Boogaart KG, Tolosana-Delgado R. Analyzing compositional data with R. Springer; 2013.

Book  Google Scholar 

De Carli MM, Baccarelli AA, Trevisi L, Pantic I, Brennan KJ, Hacker MR, et al. Epigenome-wide cross-tissue predictive modeling and comparison of cord blood and placental methylation in a birth cohort. Epigenomics. 2017;9(3):231–40.

Article  PubMed  PubMed Central  Google Scholar 

Heiss JA, Just AC. Improved filtering of DNA methylation microarray data by detection p values and its impact on downstream analyses. Clin Epigenetics. 2019;11(1):15.

Article  PubMed  PubMed Central  Google Scholar 

Xu Z, Langie SA, De Boever P, Taylor JA, Niu L. RELIC: a novel dye-bias correction method for Illumina Methylation BeadChip. BMC Genomics. 2017;18(1):4.

Article  PubMed  PubMed Central  Google Scholar 

Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27.

Article  PubMed  Google Scholar 

Templ M, Hron K, Filzmoser P. robCompositions: an R-package for robust statistical analysis of compositional data. Compos Data Anal Theory Appl. 2011. https://doi.org/10.1002/9781119976462.

Article  Google Scholar 

Shanmugam R. Applied compositional data analysis: with worked examples in R: by Peter Filzmoser, Karel Hron, and Matthias Templ, Springer Verlag Press, Nature Switzerland AG, 2018, pp. 280+ xvii, $89.00, ISBN: 978-3-319-96420-1 (hardback). Taylor & Francis; 2019

Chen J, Zhang X, Hron K, Templ M, Li S. Regression imputation with Q-mode clustering for rounded zero replacement in high-dimensional compositional data. J Appl Stat. 2018;45(11):2067–80.

Article  Google Scholar 

Van den Boogaart G. T-DR, Bren M. compositions: Compositional Data Analysis. 2.0–4 ed2022. p. R package

Hsu HH, Chiu YH, Coull BA, Kloog I, Schwartz J, Lee A, et al. Prenatal particulate air pollution and asthma onset in urban children. Identifying sensitive windows and sex differences. Am J Respir Crit Care Med. 2015;192(9):1052–9.

Article  CAS  PubMed  Google Scholar 

Chiu YH, Hsu HH, Coull BA, Bellinger DC, Kloog I, Schwartz J, et al. Prenatal particulate air pollution and neurodevelopment in urban children: examining sensitive windows and sex-specific associations. Environ Int. 2016;87:56–65.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif