Prediction of the number of asthma patients using environmental factors based on deep learning algorithms

Network TGA. The global asthma report 2022. Int J Tuberc Lung Dis. 2022;26:1–104.

Article  Google Scholar 

Chen Y, Kong D, Fu J, Zhang Y, Zhao Y, Liu Y, Chang Z, Liu Y, Liu X, Xu K, Jiang C, Fan Z. Associations between ambient temperature and adult asthma hospitalizations in Beijing, China: a time-stratified case-crossover study. Respir Res. 2022;23:1–2.

Article  Google Scholar 

D’Amato G, Holgate ST, Pawankar R, Ledford DK, Cecchi L, Al-Ahmad M, Al-Enezi F, Al-Muhsen S, Ansotegui I, Baena-Cagnani CE, Baker DJ, Bayram H, Bergmann KC, Boulet LP, Buters JT, D’Amato M, Dorsano S, Douwes J, Finlay SE, Garrasi D, Gómez M, Haahtela T, Halwani R, Hassani Y, Mahboub B, Marks G, Michelozzi P, Montagni M, Nunes C, Oh JJ, Popov TA, Portnoy J, Ridolo E, Rosário N, Rottem M, Sánchez-Borges M, Sibanda E, Sienra-Monge JJ, Vitale C, Annesi-Maesano I. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ J. 2015;8:1–52.

Article  Google Scholar 

McCullagh P, Nelder JA. Generalized linear models. USA: Springer; 1983.

Book  Google Scholar 

Wood SN. Generalized additive models: an Introduction with R. 2nd ed. Boca Raton: CRC Press; 2017.

Book  Google Scholar 

Gasparrini A. Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw. 2011;43:1–20.

Article  PubMed  PubMed Central  Google Scholar 

Ayyadevara VK. Random forest. In: Pro machine learning algorithms: a hands-on approach to implementing algorithms in Python and R. Berkeley, CA: Apress; 2018. p. 105–16.

Prettenhofer P, Louppe G. Gradient boosted regression trees in scikit-learn. InPyData 2014;2014.

Cassino C, Ito K, Bader IR, Ciotoli C, Thurston G, Reibman JO. Cigarette smoking and ozone-associated emergency department use for asthma by adults in New York City. Am J Respir Crit Care Med. 1999;159:1773–9.

Article  CAS  PubMed  Google Scholar 

Lee SW, Yon DK, James CC, Lee S, Koh HY, Sheen YH, Oh JW, Han MY, Sugihara G. Short-term effects of multiple outdoor environmental factors on risk of asthma exacerbations: age-stratified time-series analysis. J Allergy Clin Immunol. 2019;144:1542-50.e1.

Article  CAS  PubMed  Google Scholar 

Sun X, Waller A, Yeatts KB, Thie L. Pollen concentration and asthma exacerbations in Wake County, North Carolina, 2006–2012. Sci Total Environ. 2016;544:185–91.

Article  CAS  PubMed  Google Scholar 

Jeddi Z, Gryech I, Ghogho M, El Hammoumi M, Mahraoui C. Machine learning for predicting the risk for childhood asthma using prenatal, perinatal, postnatal and environmental factors. Healthcare (Basel). 2021;9:1464.

Article  PubMed  Google Scholar 

Medsker LR, Jain LC, editors. Recurrent neural networks: design and applications. Boca Raton: CRC Press; 1999.

Google Scholar 

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9:1735–80.

Article  CAS  PubMed  Google Scholar 

Cho K, van Merrienboer B, Bahdanau D, Bengio Y. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259; 2014.

Woo J, Lee JH, Kim Y, Rudasingwa G, Lim DH, Kim S. Forecasting the effects of real-time indoor PM2.5 on peak expiratory flow rates (PEFR) of asthmatic children in Korea: a deep learning approach. IEEE Access. 2022;10:19391–400.

Article  Google Scholar 

Kim D, Cho S, Tamil L, Song DJ, Seo S. Predicting asthma attacks: effects of indoor PM concentrations on peak expiratory flow rates of asthmatic children. IEEE Access. 2019;8:8791–7.

Article  Google Scholar 

Chang M, Ku Y. LSTM model for predicting the daily number of asthma patients in Seoul, South Korea, using meteorological and air pollution data. Environ Sci Pollut Res Int. 2023;30:37440–8.

Article  PubMed  Google Scholar 

Billa J. Dropout approaches for LSTM based speech recognition systems. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2018. p. 5879–83.

Pham V, Bluche T, Kermorvant C, Louradour J. Dropout improves recurrent neural networks for handwriting recognition. In: 2014 14th International Conference on Frontiers in Handwriting Recognition. IEEE; 2014. p. 285–90.

Yoon H. Time series data analysis using wavenet and walk forward validation. J Korea Soc Simul. 2021;30:1–8.

Google Scholar 

Tran TN, Phuc DT. Grid search of multilayer perceptron based on the walk-forward validation methodology. Int J Electr Comput Eng. 2021;11:1742.

Google Scholar 

Gulli A, Pal S. Deep learning with Keras. Birmingham: Packt Publishing Ltd; 2017.

Google Scholar 

Raschka S, Mirjalili V. Python machine learning: machine learning and deep learning with Python, scikit-learn, and TensorFlow 2. Birmingham: Packt Publishing Ltd.; 2019.

Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

Google Scholar 

Altmann A, Toloşi L, Sander O, Lengauer T. Permutation importance: a corrected feature importance measure. Bioinformatics. 2010;26:1340–7.

Article  CAS  PubMed  Google Scholar 

Xiong X, Wei Y, Lam HCY, Wong CKH, Lau SYF, Zhao S, Ran J, Li C, Jiang X, Yue Q, Cheng W, Wang H, Wang Y, Chong KC. Association between cold weather, influenza infection, and asthma exacerbation in adults in Hong Kong. Sci Total Environ. 2023;857: 159362.

Article  CAS  PubMed  Google Scholar 

Hales S, Lewis S, Slater T, Crane J, Pearce N. Prevalence of adult asthma symptoms in relation to climate in New Zealand. Environ Health Perspect. 1998;106:607–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bloomer BJ, Stehr JW, Piety CA, Salawitch RJ, Dickerson RR. Observed relationships of ozone air pollution with temperature and emissions. Geophys Res Lett 2009;36.

Bull GM. The weather and deaths from pneumonia. Lancet. 1980;1:1405–8.

Article  CAS  PubMed  Google Scholar 

Graudenz GS, Landgraf RG, Jancar S, Tribess A, Fonseca SG, Faé KC, Kalil J. The role of allergic rhinitis in nasal responses to sudden temperature changes. J Allergy Clin Immunol. 2006;118:1126–32.

Article  PubMed  Google Scholar 

Togias AG, Naclerio RM, Proud D, Fish JE, Adkinson NF Jr, Kagey-Sobotka A, Norman PS, Lichtenstein LM. Nasal challenge with cold, dry air results in release of inflammatory mediators. Possible mast cell involvement. J Clin Invest. 1985;76:1375–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu Z, Huang C, Su H, Turner LR, Qiao Z, Tong S. Diurnal temperature range and childhood asthma: a time-series study. Environ Health. 2013;12:12.

Article  PubMed  PubMed Central  Google Scholar 

Kim J, Lim Y, Kim H. Outdoor temperature changes and emergency department visits for asthma in Seoul, Korea: a time-series study. Environ Res. 2014;135:15–20.

Article  CAS  PubMed  Google Scholar 

Bronte-Moreno O, González-Barcala FJ, Muñoz-Gall X, Pueyo-Bastida A, Ramos-González J, Urrutia-Landa I. Impact of air pollution on asthma: a scoping review. Open Respir Arch. 2023;5: 100229.

Article  PubMed  PubMed Central  Google Scholar 

Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA 3rd, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389:1907–18.

Article  PubMed  PubMed Central  Google Scholar 

Kelly FJ. Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med. 2003;60:612–6.

Article  PubMed  PubMed Central  Google Scholar 

Li XY, Gilmour PS, Donaldson K, Macnee W. In vivo and in vitro proinflammatory effects of particulate air pollution (PM10). Environ Health Perspect. 1997;105(suppl 5):1279–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Villeneuve PJ, Chen L, Rowe BH, Coates F. Outdoor air pollution and emergency department visits for asthma among children and adults: a case-crossover study in northern Alberta. Canada Environ Health. 2007;6:1–15.

Google Scholar 

Delfino RJ, Zeiger RS, Seltzer JM, Street DH, Matteucci RM, Anderson PR, Koutrakis P. The effect of outdoor fungal spore concentrations on daily asthma severity. Environ Health Perspect. 1997;105:622–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ostro B, Lipsett M, Mann J, Braxton-Owens H, White M. Air pollution and exacerbation of asthma in African–American children in Los Angeles. Epidemiology. 2001;12:200–8.

Article  CAS  PubMed  Google Scholar 

Tecer LH, Alagha O, Karaca F, Tuncel G, Eldes N. Particulate matter (PM(2.5), PM(10–2.5), and PM(10)) and children’s hospital admissions for asthma and respiratory diseases: a bidirectional case-crossover study. J Toxicol Environ Health A. 2008;71:512–20.

Article  CAS  PubMed  Google Scholar 

Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE, Dekruyff RH, Umetsu DT. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol. 2011;12:631–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feldman LY, Zhu J, To T. Estimating age-specific influenza-associated asthma morbidity in Ontario, Canada. Respir Med. 2019;155:104–12.

Article  PubMed  Google Scholar 

Gerke AK, Yang M, Tang F, Foster ED, Cavanaugh JE, Polgreen PM. Association of hospitalizations for asthma with seasonal and pandemic influenza. Respirology. 2014;19:116–21.

Article  PubMed 

Comments (0)

No login
gif