Mesenchymal stem cell-derived apoptotic bodies alleviate alveolar bone destruction by regulating osteoclast differentiation and function

Trindade, F. et al. Uncovering the molecular networks in periodontitis. Proteomics Clin. Appl. 8, 748–761 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Kinane, D. Causation and pathogenesis of periodontal disease. Periodontol. 2000 25, 8–20 (2001).

Article  PubMed  Google Scholar 

Lourenço, T. et al. Microbial signature profiles of periodontally healthy and diseased patients. J. Clin. Periodontol. 41, 1027–1036 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Tobeiha, M., Moghadasian, M., Amin, N. & Jafarnejad, S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. BioMed Res. Int. 2020, 6910312 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Kong, Y. et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 397, 315–323 (1999).

Article  PubMed  Google Scholar 

Dougall, W. et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 13, 2412–2424 (1999).

Article  PubMed  PubMed Central  Google Scholar 

Prockop, D. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71–74 (1997).

Article  PubMed  Google Scholar 

Shi, S. & Gronthos, S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res. 18, 696–704 (2003).

Article  PubMed  Google Scholar 

Shi, S. et al. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat. Biotechnol. 20, 587–591 (2002).

Article  PubMed  Google Scholar 

Antebi, B., Pelled, G. & Gazit, D. Stem cell therapy for osteoporosis. Curr. Osteoporos. Rep. 12, 41–47 (2014).

Article  PubMed  Google Scholar 

Yao, W. et al. Reversing bone loss by directing mesenchymal stem cells to bone. Stem Cells 31, 2003–2014 (2013).

Article  PubMed  Google Scholar 

Mettraux, G., Gusberti, F. & Graf, H. Oxygen tension (pO2) in untreated human periodontal pockets. J. Periodontol. 55, 516–521 (1984).

Article  PubMed  Google Scholar 

Koch, C., Kruuv, J., Frey, H. & Snyder, R. Plateau phase in growth induced by hypoxia. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 23, 67–74 (1973).

Article  PubMed  Google Scholar 

Ho, F., Tsang, W., Kong, S. & Kwok, T. The critical role of caspases activation in hypoxia/reoxygenation induced apoptosis. Biochem. Biophys. Res. Commun. 345, 1131–1137 (2006).

Article  PubMed  Google Scholar 

Cao, L., Li, Y., Cheng, F., Li, S. & Long, D. Hypoxia/reoxygenation up-regulated the expression of death receptor 5 and enhanced apoptosis in human hepatocyte line. Transplant. Proc. 38, 2207–2209 (2006).

Article  PubMed  Google Scholar 

Juncadella, I. et al. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature 493, 547–551 (2013).

Article  PubMed  Google Scholar 

Hochreiter-Hufford, A. & Ravichandran, K. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5, a008748 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Kinchen, J. et al. A pathway for phagosome maturation during engulfment of apoptotic cells. Nat. Cell Biol. 10, 556–566 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Elliott, M. et al. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature 467, 333–337 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Elliott, M. & Ravichandran, K. The dynamics of apoptotic cell clearance. Dev. Cell 38, 147–160 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Jung, Y. et al. Cell reprogramming using extracellular vesicles from differentiating stem cells into white/beige adipocytes. Sci. Adv. 6, eaay6721 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Qi, X. et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int. J. Biolog. Sci. 12, 836–849 (2016).

Article  Google Scholar 

Vlassov, A., Magdaleno, S., Setterquist, R. & Conrad, R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta. 1820, 940–948 (2012).

Article  PubMed  Google Scholar 

Holmgren, L., Bergsmedh, A. & Spetz, A. Horizontal transfer of DNA by the uptake of apoptotic bodies. Vox Sang. 83, 305–306 (2002).

Article  PubMed  Google Scholar 

Li, X. et al. Apoptosis-induced translocation of centromere protein F in its corresponding autoantibody production in hepatocellular carcinoma. Oncoimmunology 10, 1992104 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Bose, R. et al. Reconstructed apoptotic bodies as targeted “nano decoys” to treat intracellular bacterial infections within macrophages and cancer cells. ACS Nano 14, 5818–5835 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Zernecke, A. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2, ra81 (2009).

Article  PubMed  Google Scholar 

Hristov, M., Erl, W., Linder, S. & Weber, P. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104, 2761–2766 (2004).

Article  PubMed  Google Scholar 

Ma, Q. et al. Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J. Biol. Chem. 294, 11240–11247 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Jiang, J., Mikami, K., Venugopal, S., Li, Y. & Török, N. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-kappaB-dependent pathways. J. Hepatol. 51, 139–148 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Marin-Gallen, S. et al. Dendritic cells pulsed with antigen-specific apoptotic bodies prevent experimental type 1 diabetes. Clin. Exp. Immunol. 160, 207–214 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Liu, J. et al. Apoptotic bodies derived from mesenchymal stem cells promote cutaneous wound healing via regulating the functions of macrophages. Stem Cell Res. Therapy 11, 507 (2020).

Article  Google Scholar 

György, B. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68, 2667–2688 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Liu, D. et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 28, 918–933 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Lei, F. et al. Treatment of inflammatory bone loss in periodontitis by stem cell-derived exosomes. Acta Biomater. 141, 333–343 (2022).

Article  PubMed  Google Scholar 

Qiao, X. et al. Dental pulp stem cell-derived exosomes regulate anti-inflammatory and osteogenesis in periodontal ligament stem cells and promote the repair of experimental periodontitis in rats. Int. J. Nanomed. 18, 4683–4703 (2023).

Article  Google Scholar 

Li, Y. et al. Triamcinolone acetonide-loaded nanoparticles encapsulated by CD90 MCSs-derived microvesicles drive anti-inflammatory properties and promote cartilage regeneration after osteoarthritis. J. Nanobiotechnol. 20, 150 (2022).

Article  Google Scholar 

Nawaz, M. et al. Extracellular vesicles: evolving factors in stem cell biology. Stem Cells Int. 2016, 1073140 (2016).

Article  PubMed  Google Scholar 

Weavers, H., Evans, I., Martin, P. & Wood, W. Corpse engulfment generates a molecular memory that primes the macrophage inflammatory response. Cell 165, 1658–1671 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Ye, Q. et al. Apoptotic extracellular vesicles alleviate Pg-LPS induced inflammatory responses of macrophages via AMPK/SIRT1/NF-κB pathway and inhibit osteoclast formation. J. Periodontol. 93, 1738–1751 (2022).

Article  PubMed  Google Scholar 

Plotkin, L. Apoptotic osteocytes and the control of targeted bone resorption. Curr. Osteoporos. Rep. 12, 121–126 (2014).

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif