Molecular mechanisms of cellular metabolic homeostasis in stem cells

Folmes, C. D., Dzeja, P. P., Nelson, T. J. & Terzic, A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 11, 596–606 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Liu, K. et al. Cellular metabolism and homeostasis in pluripotency regulation. Protein Cell 11, 630–640 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Meacham, C. E., DeVilbiss, A. W. & Morrison, S. J. Metabolic regulation of somatic stem cells in vivo. Nat. Rev. Mol. Cell Biol. 23, 428–443 (2022).

Article  PubMed  Google Scholar 

Jin, Y. et al. Application of stem cells in regeneration medicine. MedComm 4, e291 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Seydel, C. Single-cell metabolomics hits its stride. Nat. Methods 18, 1452–1456 (2021).

Article  PubMed  Google Scholar 

Chandel, N. S. Carbohydrate metabolism. Cold Spring Harb. Perspect. Biol. 13, a040568 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Chandel, N. S., Jasper, H., Ho, T. T. & Passegué, E. Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing. Nat. Cell Biol. 18, 823–832 (2016).

Article  PubMed  Google Scholar 

Cliff, T. S. et al. MYC controls human pluripotent stem cell fate decisions through regulation of metabolic flux. Cell Stem Cell 21, 502–516 e9 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Kikani, C. & Xiao, M. Glutamine metabolism co‐ordinates the cell‐cycle with cell fate in stem cells. FASEB J. 36, 629–642.e8 (2022).

Article  Google Scholar 

Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

Article  PubMed  Google Scholar 

Pladevall-Morera, D. & Zylicz, J. J. Chromatin as a sensor of metabolic changes during early development. Front. Cell Dev. Biol. 10, 1014498 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Baksh, S. C. et al. Extracellular serine controls epidermal stem cell fate and tumour initiation. Nat. Cell Biol. 22, 779–790 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Samanta, D. & Semenza, G. L. Serine synthesis helps hypoxic cancer stem cells regulate redox. Cancer Res. 76, 6458–6462 (2016).

Article  PubMed  Google Scholar 

van Gastel, N. & Carmeliet, G. Metabolic regulation of skeletal cell fate and function in physiology and disease. Nat. Metab. 3, 11–20 (2021).

Article  PubMed  Google Scholar 

Ning, K. et al. Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation. Mol. Metab. 58, 101450 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Gu, W. et al. Glycolytic metabolism plays a functional role in regulating human pluripotent stem cell state. Cell Stem Cell 19, 476–490 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Liu, W. & Chen, G. Regulation of energy metabolism in human pluripotent stem cells. Cell Mol. Life Sci. 78, 8097–8108 (2021).

Article  PubMed  Google Scholar 

Nakamura-Ishizu, A., Ito, K. & Suda, T. Hematopoietic stem cell metabolism during development and aging. Dev. Cell 54, 239–255 (2020).

Article  PubMed  PubMed Central  Google Scholar 

van Gastel, N. & Scadden, D. T. Young haematopoietic stem cells are picky eaters. Cell Res. 31, 377–378 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Chen, Z., Guo, Q., Song, G. & Hou, Y. Molecular regulation of hematopoietic stem cell quiescence. Cell Mol. Life Sci. 79, 218 (2022).

Article  PubMed  Google Scholar 

Ding, H. et al. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am. J. Physiol. Ren. Physiol. 313, F561–F575 (2017).

Article  Google Scholar 

Rodríguez-Colman, M. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543, 424–427 (2017).

Article  PubMed  Google Scholar 

Shyh-Chang, N., Daley, G. Q. & Cantley, L. C. Stem cell metabolism in tissue development and aging. Development 140, 2535–2547 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Pascale, R. M. et al. The Warburg effect 97 years after its discovery. Cancers 12, 2819 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

Article  PubMed  Google Scholar 

Flores, A. et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat. Cell Biol. 19, 1017–1026 (2017).

Article  PubMed  Google Scholar 

Bensard, C. L. et al. Regulation of tumor initiation by the mitochondrial pyruvate carrier. Cell Metab. 31, 284–300 e7 (2020).

Article  PubMed  Google Scholar 

Li, C. et al. Loss of sphingosine kinase 2 promotes the expansion of hematopoietic stem cells by improving their metabolic fitness. Blood 140, 1686–1701 (2022).

Article  PubMed  Google Scholar 

Wang, Z. et al. Enhanced glycolysis-mediated energy production in alveolar stem cells is required for alveolar regeneration. Cell Stem Cell 30, 1028–1042 e7 (2023).

Article  PubMed  Google Scholar 

Ryall, J. G. et al. The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell 16, 171–183 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Forte, D. et al. Bone marrow mesenchymal stem cells support acute myeloid leukemia bioenergetics and enhance antioxidant defense and escape from chemotherapy. Cell Metab. 32, 829–843 e9 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Yu, W. M. et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 12, 62–74 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Lin, C. et al. Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration. Nat. Commun. 13, 6869 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Pattappa, G., Heywood, H. K., de Bruijn, J. D. & Lee, D. A. The metabolism of human mesenchymal stem cells during proliferation and differentiation. J. Cell Physiol. 226, 2562–2570 (2011).

Article  PubMed  Google Scholar 

Huang, T. et al. Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci. Adv. 7, eabj0534 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Sivanand, S., Viney, I. & Wellen, K. E. Spatiotemporal control of acetyl-CoA metabolism in chromatin regulation. Trends Biochem. Sci. 43, 61–74 (2018).

Article  PubMed  Google Scholar 

Martinez-Reyes, I., Chandel, N. S. & Mitochondrial, T. C. A. cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Serefidou, M., Venkatasubramani, A. V. & Imhof, A. The impact of one carbon metabolism on histone methylation. Front Genet 10, 764 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Xie, N. et al. NAD(+) metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target Ther. 5, 227 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Wang, H. et al. Nicotinamide mononucleotide supplementation improves mitochondrial dysfunction and rescues cellular senescence by NAD(+)/Sirt3 pathway in mesenchymal stem cells. Int. J. Mol. Sci. 23, 14739 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Pi, C. et al. Nicotinamide phosphoribosyltransferase postpones rat bone marrow mesenchymal stem cell senescence by mediating NAD(+)-Sirt1 signaling. Aging 11, 3505–3522 (2019).

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif