Chronic lymphocytic leukemia patient-derived xenografts recapitulate clonal evolution to Richter transformation

Nadeu F, Diaz-Navarro A, Delgado J, Puente XS, Campo E. Genomic and epigenomic alterations in chronic lymphocytic leukemia. Annu Rev Pathol: Mech Dis. 2020;15:149–77.

Article  CAS  Google Scholar 

Delgado J, Nadeu F, Colomer D, Campo E. Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies. Haematologica 2020;105:2205–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kulis M, Heath S, Bibikova M, Queirós AC, Navarro A, Clot G, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet. 2012;44:1236–42.

Article  CAS  PubMed  Google Scholar 

Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-Abril J, Martín-Subero JI, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015;526:519–24.

Article  CAS  PubMed  Google Scholar 

Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in progression and relapse. Nature 2015;526:525–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Knisbacher BA, Lin Z, Hahn CK, Nadeu F, Duran-Ferrer M, Stevenson KE, et al. Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nat Genet. 2022;54:1664–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Condoluci A, Rossi D. Biology and treatment of Richter transformation. Front Oncol. 2022;12:829983.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rossi D, Spina V, Gaidano G. Biology and treatment of Richter syndrome. Blood 2018;131:2761–72.

Article  CAS  PubMed  Google Scholar 

Smyth E, Eyre TA, Cheah CY. Emerging therapies for the management of Richter transformation. J Clin Oncol. 2023;41:395–409.

Article  CAS  PubMed  Google Scholar 

Klintman J, Appleby N, Stamatopoulos B, Ridout K, Eyre TA, Robbe P, et al. Genomic and transcriptomic correlates of Richter transformation in chronic lymphocytic leukemia. Blood 2021;137:2800–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nadeu F, Royo R, Massoni-Badosa R, Playa-Albinyana H, Garcia-Torre B, Duran-Ferrer M, et al. Detection of early seeding of Richter transformation in chronic lymphocytic leukemia. Nat Med. 2022;28:1662–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parry EM, Leshchiner I, Guièze R, Johnson C, Tausch E, Parikh SA, et al. Evolutionary history of transformation from chronic lymphocytic leukemia to Richter syndrome. Nat Med. 2023;29:158–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Playa-Albinyana H, Arenas F, Colomer D. Advantages and disadvantages of mouse models of chronic lymphocytic leukemia in drug discovery. Expert Opin Drug Discov. 2021;16:1085–90.

Article  CAS  PubMed  Google Scholar 

Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA. 2002;99:6955–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan X, Albesiano E, Zanesi N, Yancopoulos S, Sawyer A, Romano E, et al. B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proc Natl Acad Sci. 2006;103:11713–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zaborsky N, Gassner FJ, Höpner JP, Schubert M, Hebenstreit D, Stark R, et al. Exome sequencing of the TCL1 mouse model for CLL reveals genetic heterogeneity and dynamics during disease development. Leukemia 2019;33:957–68.

Article  CAS  PubMed  Google Scholar 

Wang L, Brooks AN, Fan J, Wan Y, Gambe R, Li S, et al. Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia. Cancer Cell. 2016;30:750–63.

Article  PubMed  PubMed Central  Google Scholar 

Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13:4.

Article  PubMed  PubMed Central  Google Scholar 

Zanella ER, Grassi E, Trusolino L. Towards precision oncology with patient-derived xenografts. Nat Rev Clin Oncol. 2022;19:719–32.

Article  PubMed  Google Scholar 

Vaisitti T, Braggio E, Allan JN, Arruga F, Serra S, Zamò A, et al. Novel Richter Syndrome Xenograft Models to study genetic architecture, biology, and therapy responses. Cancer Res. 2018;78:3413–20.

Article  CAS  PubMed  Google Scholar 

Fiskus W, Mill CP, Perera D, Birdwell C, Deng Q, Yang H, et al. BET proteolysis targeted chimera-based therapy of novel models of Richter Transformation-diffuse large B-cell lymphoma. Leukemia 2021;35:2621–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

ten Hacken E, Yin S, Redd RA, Hernández Sánchez M, Clement K, Brunsting Hoffmann G, et al. Loss-of-function lesions impact B-cell development and fitness but are insufficient to drive CLL in mouse models. Blood Adv. 2023;7:4514-7.

Yadav B, Wennerberg K, Aittokallio T, Tang J. Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput Struct Biotechnol J 2015;13:504–13.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ianevski A, Giri AK, Aittokallio T. SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res. 2020;48:W488–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

López-Oreja I, Gohr A, Playa-Albinyana H, Giró A, Arenas F, Higashi M, et al. SF3B1 mutation–mediated sensitization to H3B-8800 splicing inhibitor in chronic lymphocytic leukemia. Life Sci Alliance. 2023;6:e202301955.

Article  PubMed  PubMed Central  Google Scholar 

Nadeu F, Royo R, Clot G, Duran-Ferrer M, Navarro A, Martín S, et al. IGLV3-21R110 identifies an aggressive biological subtype of chronic lymphocytic leukemia with intermediate epigenetics. Blood 2021;137:2935–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maity PC, Bilal M, Koning MT, Young M, van Bergen CAM, Renna V, et al. IGLV3-21 * 01 is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling. Proc Natl Acad Sci. 2020;117:4320–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018;24:1036–46.

Article  CAS  PubMed  Google Scholar 

Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, et al. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov. 2017;7:716–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosc C, Saland E, Bousard A, Gadaud N, Sabatier M, Cognet G, et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nat Cancer. 2021;2:1204–23.

Article  CAS  PubMed  Google Scholar 

Chen Z, Cretenet G, Carnazzo V, Simon-Molas H, Kater AP, van der Windt GJW, et al. Electron transport chain and mTOR inhibition synergistically decrease CD40 signaling and counteract venetoclax resistance in chronic lymphocytic leukemia. Haematologica. (in press).

Patten PEM, Ferrer G, Chen SS, Kolitz JE, Rai KR, Allen SL, et al. A detailed analysis of parameters supporting the engraftment and growth of chronic lymphocytic leukemia cells in immune-deficient mice. Front Immunol. 2021;12:627020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

ten Hacken E, Wu CJ. Understanding CLL biology through mouse models of human genetics. Blood 2021;138:2621–31.

Article  PubMed  PubMed Central  Google Scholar 

Vaisitti T, Arruga F, Vitale N, Lee T-T, Ko M, Chadburn A, et al. ROR1 targeting with the antibody-drug conjugate VLS-101 is effective in Richter syndrome patient–derived xenograft mouse models. Blood 2021;137:3365–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaisitti T, Gaudino F, Ouk S, Moscvin M, Vitale N, Serra S, et al. Targeting metabolism and survival in chronic lymphocytic leukemia and Richter syndrome cells by a novel NF-κB inhibitor. Haematologica 2017;102:1878–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iannello A, Vitale N, Coma S, Arruga F, Chadburn A, Di Napoli A, et al. Synergistic efficacy of the dual PI3K-δ/γ inhibitor duvelisib with the Bcl-2 inhibitor venetoclax in Richter syndrome PDX models. Blood 2021;137:3378–89.

留言 (0)

沒有登入
gif