n-3 PUFAs synergistically enhance the efficacy of doxorubicin by inhibiting the proliferation and invasion of breast cancer cells

Majidinia M, et al. Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB Life. 2020;72(5):855–71. https://doi.org/10.1002/iub.2215.

Article  CAS  PubMed  Google Scholar 

de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Heal. 2020;8(2):e180–90. https://doi.org/10.1016/S2214-109X(19)30488-7.

Article  Google Scholar 

Wiggs A, Molina S, Sumner SJ, Rushing BR. A review of metabolic targets of anticancer nutrients and nutraceuticals in pre-clinical models of triple-negative breast cancer. Nutrients. 2022. https://doi.org/10.3390/nu14101990.

Article  PubMed  PubMed Central  Google Scholar 

Bou Zerdan M, et al. Triple negative breast cancer: updates on classification and treatment in 2021. Cancers (Basel). 2022;14(5):1253. https://doi.org/10.3390/cancers14051253.

Article  CAS  PubMed  Google Scholar 

Lemay-Nedjelski L, Mason-Ennis JK, Taibi A, Comelli EM, Thompson LU. Omega-3 polyunsaturated fatty acids time-dependently reduce cell viability and oncogenic microRNA-21 expression in estrogen receptor-positive breast cancer cells (MCF-7). Int J Mol Sci. 2018;19(1):1–13. https://doi.org/10.3390/ijms19010244.

Article  CAS  Google Scholar 

Kozhukharova I, Zemelko V, Kovaleva Z, Alekseenko L, Lyublinskaya O, Nikolsky N. Therapeutic doses of doxorubicin induce premature senescence of human mesenchymal stem cells derived from menstrual blood, bone marrow, and adipose tissue. Int J Hematol. 2018;107(3):286–96. https://doi.org/10.1007/s12185-017-2346-6.

Article  CAS  PubMed  Google Scholar 

Kanwal U, Bukhari NI, Ovais M, Abass N. Advances in nano-delivery systems for doxorubicin: an updated insight. J Drug Target. 2018. https://doi.org/10.1080/1061186X.2017.1380655.

Article  PubMed  Google Scholar 

Maejima Y, Adachi S, Ito H, Hirao K, Isobe M. Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell. 2008;7(2):125–36. https://doi.org/10.1111/j.1474-9726.2007.00358.x.

Article  CAS  PubMed  Google Scholar 

Rafiyath SM, Rasul M, Lee B, Wei G, Lamba G, Liu D. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: a meta-analysis. Exp Hematol Oncol. 2012;1(1):10. https://doi.org/10.1186/2162-3619-1-10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ordovas JM, Ferguson LR, Tai ES, Mathers JC. Personalised nutrition and health. BMJ. 2018. https://doi.org/10.1136/bmj.k2173.

Article  PubMed  PubMed Central  Google Scholar 

Tsugane S. Why has Japan become the world’s most long-lived country: insights from a food and nutrition perspective. Eur J Clin Nutr. 2021;75(6):921–8. https://doi.org/10.1038/s41430-020-0677-5.

Article  PubMed  Google Scholar 

Nindrea RD, Aryandono T, Lazuardi L, Dwiprahasto I. Association of dietary intake ratio of n-3/n-6 polyunsaturated fatty acids with breast cancer risk in western and asian countries: a meta-analysis. Asian Pacific J Cancer Prev. 2019;20(5):1321–7. https://doi.org/10.31557/APJCP.2019.20.5.1321.

Article  CAS  Google Scholar 

Zhao J. Nutraceuticals, nutritional therapy, phytonutrients, and phytotherapy for improvement of human health: a perspective on plant biotechnology application. Recent Pat Biotechnol. 2008;1(1):75–97. https://doi.org/10.2174/187220807779813893.

Article  Google Scholar 

Gorjao R, et al. New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacol Ther. 2019;196:117–34. https://doi.org/10.1016/j.pharmthera.2018.12.001.

Article  CAS  PubMed  Google Scholar 

Siddiqui RA, Harvey KA, Xu Z, Bammerlin EM, Walker C, Altenburg JD. Docosahexaenoic acid: a natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects. BioFactors. 2011;37(6):399–412. https://doi.org/10.1002/biof.181.

Article  CAS  PubMed  Google Scholar 

Lin G, et al. Ω-3 free fatty acids and all-trans retinoic acid synergistically induce growth inhibition of three subtypes of breast cancer cell lines. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-03231-9.

Article  PubMed  PubMed Central  Google Scholar 

Fodil M, Blanckaert V, Ulmann L, Mimouni V, Chénais B. Contribution of n-3 long-chain polyunsaturated fatty acids to the prevention of breast cancer risk factors. Int J Environ Res Pub Health. 2022. https://doi.org/10.3390/ijerph19137936.

Article  Google Scholar 

Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21093233.

Article  PubMed  PubMed Central  Google Scholar 

Bennouna D, Solano M, Orchard TS, DeVries AC, Lustberg M, Kopec RE. The effects of doxorubicin-based chemotherapy and omega-3 supplementation on mouse brain lipids. Metabolites. 2019;9(10):1–16. https://doi.org/10.3390/metabo9100208.

Article  CAS  Google Scholar 

Pan P, et al. The immunomodulatory potential of natural compounds in tumor-bearing mice and humans. Crit Rev Food Sci Nutr. 2019;59(6):992–1007. https://doi.org/10.1080/10408398.2018.1537237.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carvalho C, et al. Doxorubicin: The good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267–3285. https://doi.org/10.2174/092986709788803312.

Article  CAS  PubMed  Google Scholar 

Vaughan VC, Hassing MR, Lewandowski PA. Marine polyunsaturated fatty acids and cancer therapy. Br J Cancer. 2013;108(3):486–92. https://doi.org/10.1038/bjc.2012.586.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Newell M, Brun M, Field CJ. Treatment with DHA modify the response of MDA-MB-231 breast cancer cells and tumors from nu/nu mice to Doxorubicin through apoptosis and cell cycle arrest. J Nutr. 2019;149(1):46–56. https://doi.org/10.1093/jn/nxy224.

Article  PubMed  Google Scholar 

Fuentes NR, et al. Long-chain n-3 fatty acids attenuate oncogenic kras-driven proliferation by altering plasma membrane nanoscale proteolipid composition. Cancer Res. 2018;78(14):3899–912. https://doi.org/10.1158/0008-5472.CAN-18-0324.

Article  CAS  PubMed  PubMed Central  Google Scholar 

West L, et al. Docosahexaenoic acid ( DHA ), an omega-3 fatty acid, inhibits tumor growth and metastatic potential of ovarian cancer. American J Cancer Res. 2020;10(12):4450–63.

CAS  Google Scholar 

Taxel P, Faircloth E, Idrees S, Van Poznak C. Cancer treatment-induced bone loss in women with breast cancer and men with prostate cancer. J Endocr Soc. 2018;2(7):574–88. https://doi.org/10.1210/js.2018-00052.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng H, et al. Inhibition of endometrial cancer by n-3 polyunsaturated fatty acids in preclinical models. Cancer Prev Res. 2014;7(8):824–34. https://doi.org/10.1158/1940-6207.CAPR-13-0378-T.

Article  CAS  Google Scholar 

Kang JX, Wan J, He C. Concise review: regulation of stem cell proliferation and differentiation by essential fatty acids and their metabolites. Stem Cells. 2014;32(5):92–8. https://doi.org/10.1002/stem.1620.

Article  Google Scholar 

Limbkar K, Dhenge A, Jadhav DD, Thulasiram HV, Kale V, Limaye L. Oral feeding with polyunsaturated fatty acids fosters hematopoiesis and thrombopoiesis in healthy and bone marrow-transplanted mice. J Nutr Biochem. 2017;47:94–105. https://doi.org/10.1016/j.jnutbio.2017.05.002.

Article  CAS  PubMed  Google Scholar 

Limbkar K, Kale V, Limaye L. Oral feeding with arachidonic acid (AA) and docosahexanoic acid (DHA) help in better recovery of haematopoiesis in sub-lethally irradiated mice. Biomed Res J. 2016;3(2):182. https://doi.org/10.4103/2349-3666.240611.

Article  Google Scholar 

Yun SP, Ryu JM, Jang MW, Han HJ. Interaction of profilin-1 and F-actin via a β-arrestin-1/JNK signaling pathway involved in prostaglandin E2-induced human mesenchymal stem cells migration and proliferation. J Cell Physiol. 2011;226(2):559–571. https://doi.org/10.1002/jcp.22366.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif