Chitosan-encapsulated naringenin promotes ROS mediated through the activation of executioner caspase-3

Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R. Chitin and chitosan in selected biomedical applications. Prog Polym Sci. 2014. https://doi.org/10.1016/j.progpolymsci.2014.02.008.

Article  Google Scholar 

Trachootham D, Lu W, Ogasawara MA, Nilsa RDV, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10:1343–74. https://doi.org/10.1089/ars.2007.1957.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar SP, Birundha K, Kaveri K, Devi KTR. Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells. Int J Biol Macromol. 2015;78:87–95. https://doi.org/10.1016/j.ijbiomac.2015.03.045.

Article  CAS  PubMed  Google Scholar 

Jayaraman J, Jesudoss VAS, Menon VP, Namasivayam N. Anti-inflammatory role of naringenin in rats with ethanol induced liver injury. Toxicol Mech Methods. 2012;22:568–76. https://doi.org/10.3109/15376516.2012.707255.

Article  CAS  PubMed  Google Scholar 

McCord JM, Fridovich I. The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem. 1968;243:5753–60. https://doi.org/10.1016/S0021-9258(18)91929-0.

Article  CAS  PubMed  Google Scholar 

Gokulnath M, Partridge NC, Selvamurugan N. Runx2, a target gene for activating transcription factor-3 in human breast cancer cells. Tumor Biol. 2015. https://doi.org/10.1007/s13277-014-2796-x.

Article  Google Scholar 

Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020. https://doi.org/10.1038/s12276-020-0384-2.

Article  PubMed  PubMed Central  Google Scholar 

Huang X, Shi X, Zhou J, Li S, Zhang L, Zhao H, Kuang X, Li J. The activation of antioxidant and apoptosis pathways involved in damage of human proximal tubule epithelial cells by PM2.5 exposure. Sci Eur Environ. 2020. https://doi.org/10.1186/s12302-019-0284-z.

Article  Google Scholar 

Bastianetto S, Ramassamy C, Poirier J, Quirion R. Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res Mol Brain Res. 1999;66:35–41. https://doi.org/10.1016/S0169-328X(99)00002-9.

Article  CAS  PubMed  Google Scholar 

Halliwell B, Gutteridge JM. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 1981;128:347–52. https://doi.org/10.1016/0014-5793(81)80114-7.

Article  CAS  PubMed  Google Scholar 

Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–51. https://doi.org/10.1016/j.redox.2015.08.020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramya Devi KT, Sivalingam N. Cichorium intybus attenuates Streptozotocin-induced pancreatic β-cell damage by inhibiting NF-κB activation and oxidative stress. J Appl Biomed. 2020;18:70–9. https://doi.org/10.32725/jab.2020.010.

Article  Google Scholar 

Fathi M, Abdolahinia ED, Barar J, Omidi Y. Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine. 2020;15:2171–200. https://doi.org/10.2217/nnm-2020-0146.

Article  CAS  PubMed  Google Scholar 

Bashir SM, Ahmed Rather G, Patrício A, Haq Z, Sheikh AA, Ul Shah MZH, Singh H, Khan AA, Imtiyaz S, Ahmad SB, et al. Chitosan nanoparticles: a versatile platform for biomedical applications. Materials. 2022;15:6521. https://doi.org/10.3390/ma15196521.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luque-Bolivar A, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Resistance and overcoming resistance in breast cancer. Breast Cancer Targets Ther. 2020;12:211–29. https://doi.org/10.2147/BCTT.S270799.

Article  CAS  Google Scholar 

Frigaard J, Jensen JL, Galtung HK, Hiorth M. The potential of chitosan in nanomedicine: an overview of the cytotoxicity of chitosan based nanoparticles. Front Pharmacol. 2022;13:1492. https://doi.org/10.3389/fphar.2022.880377.

Article  CAS  Google Scholar 

Chipuk JE, Bouchier-Hayes L, Green DR. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ. 2006. https://doi.org/10.1038/sj.cdd.4401963.

Article  PubMed  Google Scholar 

Friedlander RM. Apoptosis and caspases in neurodegenerative diseases. N Engl J Med. 2003;348:1365–75. https://doi.org/10.1056/NEJMra022366.

Article  CAS  PubMed  Google Scholar 

Rahmanian N, Hosseinimehr SJ, Khalaj A. The paradox role of caspase cascade in ionizing radiation therapy. J Biomed Sci. 2016;23:88. https://doi.org/10.1186/s12929-016-0306-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5:1–28. https://doi.org/10.1101/cshperspect.a008656.

Article  CAS  Google Scholar 

Arslan H, Özdemir S, Altun S. Cypermethrin toxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinus carpio L). Chemosphere. 2017;180:491–9. https://doi.org/10.1016/j.chemosphere.2017.04.057.

Article  CAS  PubMed  Google Scholar 

Porter A, Janicke R. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104. https://doi.org/10.1038/sj.cdd.4400476.

Article  CAS  PubMed  Google Scholar 

Ponder KG, Boise LH. The prodomain of caspase-3 regulates its own removal and caspase activation. Cell Death Discov. 2019;5:56. https://doi.org/10.1038/s41420-019-0142-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Madesh M, Balasubramanian KA. A microtiter plate assay for superoxide using MTT reduction method. Indian J Biochem Biophys. 1997;34:535–9 (PMID: 9803669).

CAS  PubMed  Google Scholar 

Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9265–9. https://doi.org/10.1073/pnas.84.24.9265.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parks DA, Granger DN. Ischemia-reperfusion injury: a radical view. Hepatology. 1988;8:680–2. https://doi.org/10.1002/hep.1840080341.

Article  CAS  PubMed  Google Scholar 

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. https://doi.org/10.1016/0003-2697(76)90527-3.

Article  CAS  PubMed  Google Scholar 

Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol. 2010;594:57–72. https://doi.org/10.1007/978-1-60761-411-1_4.

Article  CAS  PubMed  Google Scholar 

Datta S, Choudhury D, Das A, Das Mukherjee D, Das N, Roy SS, Chakrabarti G. Paclitaxel resistance development is associated with biphasic changes in reactive oxygen species, mitochondrial membrane potential and autophagy with elevated energy production capacity in lung cancer cells: a chronological study. Tumor Biol. 2017. https://doi.org/10.1177/1010428317694314.

Article  Google Scholar 

Agarwal A, Kasinathan A, Ganesan R, Balasubramanian A, Bhaskaran J, Suresh S, Srinivasan R, Aravind KB, Sivalingam N. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells. Nutr Res. 2018;51:67–81. https://doi.org/10.1016/j.nutres.2017.12.011.

Article  CAS  PubMed  Google Scholar 

Crowley LC, Scott AP, Marfell BJ, Boughaba JA, Chojnowski G, Waterhouse NJ. Measuring cell death by propidium iodide uptake and flow cytometry. Cold Spring Harb Protoc. 2016. https://doi.org/10.1101/pdb.prot087163.

Article  PubMed  Google Scholar 

Ahmadian S, Barar J, Saei AA, Fakhree MAA, Omidi Y. Cellular toxicity of nanogenomedicine in MCF-7 cell line: MTT assay. J Vis Exp JoVE. 2009. https://doi.org/10.3791/1191.

Article  PubMed  Google Scholar 

Ahamed M, Ali D, Alhadlaq HA, Akhtar MJ. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere. 2013;93:2514–22. https://doi.org/10.1016/j.chemosphere.2013.09.047.

Article  CAS  PubMed  Google Scholar 

Sridevi DV, Ramya Devi KT, Jayakumar N, Sundaravadivel E. PH dependent synthesis of TiO2nanoparticles exerts its effect on bacterial growth inhibition and osteoblasts proliferation. AIPAdv. 2020. https://doi.org/10.1063/50020029.

Article  Google Scholar 

Friederich M, Hansell P, Palm F. Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr Diabetes Rev. 2009;5:120–44. https://doi.org/10.2174/157339909788166800.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif