Li Y, Ma X, Wu W, Chen Z, Meng G. PML Nuclear Body Biogenesis, Carcinogenesis, and targeted therapy. Trends Cancer. 2020;6:889–906.
Article CAS PubMed Google Scholar
de Thé H, Le Bras M, Lallemand-Breitenbach V. The cell biology of Disease: acute promyelocytic Leukemia, arsenic, and PML bodies. J Cell Biol. 2012;198:11–21.
de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic Leukemia encodes a functionally altered RAR. Cell. 1991;66:675–84.
Ryabchenko B, Šroller V, Horníková L, Lovtsov A, Forstová J, Huérfano S. The interactions between PML nuclear bodies and small and medium size DNA viruses. Virol J. 2023;20:82.
Article CAS PubMed Google Scholar
Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, Lomonte P. PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res. 2020;48:11890–912.
Article CAS PubMed Google Scholar
Scherer M, Stamminger T. Emerging role of PML Nuclear bodies in Innate Immune Signaling. J Virol. 2016;90:5850–4.
Article CAS PubMed Google Scholar
Fada BJ, Reward E, Gu H. The role of ND10 Nuclear bodies in Herpesvirus Infection: a frenemy for the Virus? Viruses. 2021; 13.
Boutell C, Cuchet-Lourenço D, Vanni E, Orr A, Glass M, McFarlane S, Everett RD. A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence. PLoS Pathog. 2011;7:e1002245.
Article CAS PubMed Google Scholar
Wang S, Long J, Zheng CF. The potential link between PML NBs and ICP0 in regulating lytic and latent Infection of HSV-1. Protein Cell. 2012;3:372–82.
Article CAS PubMed Google Scholar
Kahle T, Volkmann B, Eissmann K, Herrmann A, Schmitt S, Wittmann S, Merkel L, Reuter N, Stamminger T, Gramberg T. TRIM19/PML restricts HIV Infection in a cell type-dependent manner. Viruses. 2015; 8.
Chen D, Feng C, Tian X, Zheng N, Wu Z. Promyelocytic Leukemia restricts Enterovirus 71 replication by inhibiting Autophagy. Front Immunol. 2018;9:1268.
Li Z, Wu Y, Li H, Li W, Tan J, Qiao W. 3 C protease of enterovirus 71 cleaves promyelocytic Leukemia protein and impairs PML-NBs production. Virol J. 2021;18:255.
Article CAS PubMed Google Scholar
El Asmi F, Maroui MA, Dutrieux J, Blondel D, Nisole S, Chelbi-Alix MK. Implication of PMLIV in both intrinsic and innate immunity. PLoS Pathog. 2014;10:e1003975.
Giovannoni F, Damonte EB, Garcia CC. Cellular promyelocytic Leukemia protein is an important dengue virus restriction factor. PLoS ONE. 2015;10:e0125690.
Giovannoni F, Ladelfa MF, Monte M, Jans DA, Hemmerich P, García C. Dengue non-structural protein 5 polymerase complexes with promyelocytic Leukemia protein (PML) isoforms III and IV to disrupt PML-Nuclear bodies in infected cells. Front Cell Infect Microbiol. 2019;9:284.
Article CAS PubMed Google Scholar
Maroui MA, Pampin M, Chelbi-Alix MK. Promyelocytic Leukemia isoform IV confers resistance to Encephalomyocarditis virus via the sequestration of 3D polymerase in nuclear bodies. J Virol. 2011;85:13164–73.
Article CAS PubMed Google Scholar
Yu C, Xu A, Lang Y, Qin C, Wang M, Yuan X, Sun S, Feng W, Gao C, Chen J et al. Swine promyelocytic Leukemia isoform II inhibits pseudorabies Virus Infection by suppressing viral gene transcription in promyelocytic Leukemia Nuclear bodies. J Virol. 2020; 94.
Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus Infection. Mol Aspects Med. 2021;81:100994.
Article CAS PubMed Google Scholar
Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra S, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol. 2022;167:1739–62.
Article CAS PubMed Google Scholar
Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, Marfin AA, Solomon T, Tsai TF, Tsu VD, Ginsburg AS. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ. 2011;89:766–74. 774A-774E.
Wang H, Liang G. Epidemiology of Japanese encephalitis: past, present, and future prospects. Ther Clin Risk Manag. 2015;11:435–48.
Takashima I, Watanabe T, Ouchi N, Hashimoto N. Ecological studies of Japanese encephalitis virus in Hokkaido: interepidemic outbreaks of swine abortion and evidence for the virus to overwinter locally. Am J Trop Med Hyg. 1988;38:420–7.
Article CAS PubMed Google Scholar
Burns KF. Congenital Japanese B encephalitis Infection of swine. Proc Soc Exp Biol Med. 1950;75:621–5.
Article CAS PubMed Google Scholar
Zhu J, Chen Z, Dai Z, Zhou X, Wang H, Li X, Zhao A, Yang S. Molecular Cloning of Alternative Splicing variants of the porcine PML Gene and its expression patterns during Japanese encephalitis virus Infection. Front Veterinary Sci. 2021; 8.
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.
Article CAS PubMed Google Scholar
Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol. 2011;1:519–25.
Article CAS PubMed Google Scholar
Iwasaki A. A virological view of innate immune recognition. Annu Rev Microbiol. 2012;66:177–96.
Article CAS PubMed Google Scholar
Guion LG, Sapp M. The role of promyelocytic Leukemia Nuclear bodies during HPV Infection. Front Cell Infect Microbiol. 2020;10:35.
Article CAS PubMed Google Scholar
Neerukonda SN. Interplay between RNA viruses and promyelocytic Leukemia Nuclear bodies. Vet Sci. 2021; 8.
Mai J, Stubbe M, Hofmann S, Masser S, Dobner T, Boutell C, Groitl P, Schreiner S. PML alternative splice products differentially regulate HAdV productive Infection. Microbiol Spectr. 2022;10:e0078522.
Zhou H, Tang Y-D, Zheng C. Revisiting IRF1-mediated antiviral innate immunity. Cytokine Growth F R. 2022.
Maarifi G, Chelbi-Alix MK, Nisole S. PML control of cytokine signaling. Cytokine Growth Factor Rev. 2014;25:551–61.
Article CAS PubMed Google Scholar
Lavau C, Marchio A, Fagioli M, Jansen J, Falini B, Lebon P, Grosveld F, Pandolfi PP, Pelicci PG, Dejean A. The acute promyelocytic leukaemia-associated PML gene is induced by interferon. Oncogene. 1995;11:871–6.
Chee AV, Lopez P, Pandolfi PP, Roizman B. Promyelocytic Leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects. J Virol. 2003;77:7101–5.
Article CAS PubMed Google Scholar
Chen Y, Wright J, Meng X, Leppard KN. Promyelocytic Leukemia protein isoform II promotes transcription factor recruitment to activate Interferon Beta and Interferon-Responsive Gene expression. Mol Cell Biol. 2015;35:1660–72.
Article CAS PubMed Google Scholar
El Bougrini J, Dianoux L, Chelbi-Alix MK. PML positively regulates interferon gamma signaling. Biochimie. 2011;93:389–98.
Giraldo MI, Hage A, van Tol S, Rajsbaum R. TRIM proteins in Host Defense and viral pathogenesis. Curr Clin Microbiol Rep. 2020;7:101–14.
Manocha GD, Mishra R, Sharma N, Kumawat KL, Basu A, Singh SK. Regulatory role of TRIM21 in the type-I interferon pathway in Japanese encephalitis virus-infected human microglial cells. J Neuroinflammation. 2014;11:24.
Chang CY, Liu HM, Chang MF, Chang SC. Middle East Respiratory Syndrome Coronavirus Nucleocapsid protein suppresses type I and type III Interferon induction by targeting RIG-I signaling. J Virol. 2020; 94.
Turelli P, Doucas V, Craig E, Mangeat B, Klages N, Evans R, Kalpana G, Trono D. Cytoplasmic recruitment of INI1 and PML on incoming HIV preintegration complexes: interference with early steps of viral replication. Mol Cell. 2001;7:1245–54.
Article CAS PubMed Google Scholar
Wang S, Ren X, Li J, Lin C, Zhou J, Zhou J, Gu J. NAP1L4 inhibits porcine circovirus type 2 replication via IFN-β signaling pathway. Vet Microbiol. 2020;246:108692.
Article CAS PubMed Google Scholar
Huang B, Li J, Zhang X, Zhao Q, Lu M, Lv Y. RIG-1 and MDA-5 signaling pathways contribute to IFN-β production and viral replication in porcine Circovirus virus type 2-infected PK-15 cells in vitro. Vet Microbiol. 2017;211:36–42.
Article CAS PubMed Google Scholar
Chang TH, Liao CL, Lin YL. Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Microbes Infect. 2006;8:157–71.
Article CAS PubMed Google Scholar
Jiang R, Ye J, Zhu B, Song Y, Chen H, Cao S. Roles of TLR3 and RIG-I in mediating the inflammatory response in mouse microglia following Japanese encephalitis virus infection. J Immunol Res. 2014; 2014:787023.
Brisse M, Ly H. Comparative structure and function analysis of the RIG-I-Like receptors: RIG-I and MDA5. Front Immunol. 2019;10:1586.
Comments (0)