Role of DCLK1/Hippo pathway in type II alveolar epithelial cells differentiation in acute respiratory distress syndrome

Agulto RL, Rogers MM, Tan TC, Ramkumar A, Downing AM, Bodin H, et al. Autoregulatory control of microtubule binding in doublecortin-like kinase 1. Elife. 2021. https://doi.org/10.7554/eLife.60126.

Article  PubMed  PubMed Central  Google Scholar 

Augusto LA, Synguelakis M, Johansson J, Pedron T, Girard R, Chaby R. Interaction of pulmonary surfactant protein C with CD14 and lipopolysaccharide. Infect Immun. 2003;71(1):61–7. https://doi.org/10.1128/IAI.71.1.61-67.2003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Auriemma CL, Zhuo H, Delucchi K, Deiss T, Liu T, Jauregui A, et al. Acute respiratory distress syndrome-attributable mortality in critically ill patients with sepsis. Intensive Care Med. 2020;46(6):1222–31. https://doi.org/10.1007/s00134-020-06010-9.

Article  PubMed  PubMed Central  Google Scholar 

Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, et al. Type 2 alveolar cells are stem cells in adult lung. J Clin Invest. 2013;123(7):3025–36. https://doi.org/10.1172/JCI68782.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barr J, Gentile ME, Lee S, Kotas ME, Fernanda de Mello Costa M, Holcomb NP, et al. Injury-induced pulmonary tuft cells are heterogenous, arise independent of key Type 2 cytokines, and are dispensable for dysplastic repair. Elife. 2022. https://doi.org/10.7554/eLife.78074.

Article  PubMed  PubMed Central  Google Scholar 

Bhaskaran M, Kolliputi N, Wang Y, Gou D, Chintagari NR, Liu L. Trans-differentiation of alveolar epithelial type II cells to type I cells involves autocrine signaling by transforming growth factor beta 1 through the Smad pathway. J Biol Chem. 2007;282(6):3968–76. https://doi.org/10.1074/jbc.M609060200.

Article  CAS  PubMed  Google Scholar 

Bime C, Casanova N, Oita RC, Ndukum J, Lynn H, Camp SM, et al. Development of a biomarker mortality risk model in acute respiratory distress syndrome. Crit Care. 2019;23(1):410. https://doi.org/10.1186/s13054-019-2697-x.

Article  PubMed  PubMed Central  Google Scholar 

Boopathy GTK, Hong W. Role of Hippo pathway-YAP/TAZ signaling in angiogenesis. Front Cell Dev Biol. 2019;7:49. https://doi.org/10.3389/fcell.2019.00049.

Article  PubMed  PubMed Central  Google Scholar 

Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet. 2022;400(10358):1145–56. https://doi.org/10.1016/S0140-6736(22)01485-4.

Article  PubMed  Google Scholar 

Bueno M, Calyeca J, Khaliullin T, Miller MP, Alvarez D, Rosas L, et al. CYB5R3 in type II alveolar epithelial cells protects against lung fibrosis by suppressing TGF-beta1 signaling. JCI Insight. 2023. https://doi.org/10.1172/jci.insight.161487.

Article  PubMed  PubMed Central  Google Scholar 

Chandrakesan P, Yao J, Qu D, May R, Weygant N, Ge Y, et al. Dclk1, a tumor stem cell marker, regulates pro-survival signaling and self-renewal of intestinal tumor cells. Mol Cancer. 2017;16(1):30. https://doi.org/10.1186/s12943-017-0594-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen G, Xie J, Huang P, Yang Z. Overexpression of TAZ promotes cell proliferation, migration and epithelial-mesenchymal transition in ovarian cancer. Oncol Lett. 2016;12(3):1821–5. https://doi.org/10.3892/ol.2016.4829.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Zhao X, Sun J, Su W, Zhang L, Li Y, et al. YAP1/Twist promotes fibroblast activation and lung fibrosis that conferred by miR-15a loss in IPF. Cell Death Differ. 2019;26(9):1832–44. https://doi.org/10.1038/s41418-018-0250-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen XY, Chen KY, Feng PH, Lee KY, Fang YT, Chen YY, et al. YAP-regulated type II alveolar epithelial cell differentiation mediated by human umbilical cord-derived mesenchymal stem cells in acute respiratory distress syndrome. Biomed Pharmacother. 2023;159: 114302. https://doi.org/10.1016/j.biopha.2023.114302.

Article  CAS  PubMed  Google Scholar 

Chhetri D, Vengadassalapathy S, Venkadassalapathy S, Balachandran V, Umapathy VR, Veeraraghavan VP, et al. Pleiotropic effects of DCLK1 in cancer and cancer stem cells. Front Mol Biosci. 2022;9: 965730. https://doi.org/10.3389/fmolb.2022.965730.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi J, Park JE, Tsagkogeorga G, Yanagita M, Koo BK, Han N, Lee JH. Inflammatory signals induce AT2 cell-derived damage-associated transient progenitors that mediate alveolar regeneration. Cell Stem Cell. 2020;27(3):366-382 e367. https://doi.org/10.1016/j.stem.2020.06.020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung EJ, Kwon S, Reedy JL, White AO, Song JS, Hwang I, et al. IGF-1 receptor signaling regulates type II pneumocyte senescence and resulting macrophage polarization in lung fibrosis. Int J Radiat Oncol Biol Phys. 2021;110(2):526–38. https://doi.org/10.1016/j.ijrobp.2020.12.035.

Article  PubMed  Google Scholar 

D’Agnillo F, Walters KA, Xiao Y, Sheng ZM, Scherler K, Park J, et al. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of fibrinolysis, and cellular senescence in fatal COVID-19. Sci Transl Med. 2021;13(620):eabj7790. https://doi.org/10.1126/scitranslmed.abj7790.

Article  CAS  PubMed  Google Scholar 

Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature. 2014;507(7491):190–4. https://doi.org/10.1038/nature12930.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DiGiovanni GT, Han W, Sherrill TP, Taylor CJ, Nichols DS, Geis NM, et al. Epithelial Yap/Taz are required for functional alveolar regeneration following acute lung injury. JCI Insight. 2023. https://doi.org/10.1172/jci.insight.173374.

Article  PubMed  PubMed Central  Google Scholar 

Domscheit H, Hegeman MA, Carvalho N, Spieth PM. Molecular dynamics of lipopolysaccharide-induced lung injury in rodents. Front Physiol. 2020;11:36. https://doi.org/10.3389/fphys.2020.00036.

Article  PubMed  PubMed Central  Google Scholar 

Fang X, Abbott J, Cheng L, Colby JK, Lee JW, Levy BD, Matthay MA. Human mesenchymal stem (stromal) cells promote the resolution of acute lung injury in part through lipoxin A4. J Immunol. 2015;195(3):875–81. https://doi.org/10.4049/jimmunol.1500244.

Article  CAS  PubMed  Google Scholar 

Gao J, Chu W, Duan J, Li J, Ma W, Hu C, et al. Six-month outcomes of post-ARDS pulmonary fibrosis in patients with H1N1 pneumonia. Front Mol Biosci. 2021;8: 640763. https://doi.org/10.3389/fmolb.2021.640763.

Article  PubMed  PubMed Central  Google Scholar 

Glasser SW, Maxfield MD, Ruetschilling TL, Akinbi HT, Baatz JE, Kitzmiller JA, et al. Persistence of LPS-induced lung inflammation in surfactant protein-C-deficient mice. Am J Respir Cell Mol Biol. 2013;49(5):845–54. https://doi.org/10.1165/rcmb.2012-0374OC.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gokey JJ, Sridharan A, Xu Y, Green J, Carraro G, Stripp BR, et al. Active epithelial Hippo signaling in idiopathic pulmonary fibrosis. JCI Insight. 2018. https://doi.org/10.1172/jci.insight.98738.

Article  PubMed  PubMed Central  Google Scholar 

Gokey JJ, Patel SD, Kropski JA. The role of Hippo/YAP signaling in alveolar repair and pulmonary fibrosis. Front Med (lausanne). 2021;8: 752316. https://doi.org/10.3389/fmed.2021.752316.

Article  PubMed  Google Scholar 

Gu C, Li Y, Liu J, Ying X, Liu Y, Yan J, et al. LncRNA-mediated SIRT1/FoxO3a and SIRT1/p53 signaling pathways regulate type II alveolar epithelial cell senescence in patients with chronic obstructive pulmonary disease. Mol Med Rep. 2017;15(5):3129–34. https://doi.org/10.3892/mmr.2017.6367.

Article  CAS  PubMed  Google Scholar 

Higo H, Ohashi K, Tomida S, Okawa S, Yamamoto H, Sugimoto S, et al. Identification of targetable kinases in idiopathic pulmonary fibrosis. Respir Res. 2022;23(1):20. https://doi.org/10.1186/s12931-022-01940-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu C, Sun J, Du J, Wen D, Lu H, Zhang H, et al. The Hippo-YAP pathway regulates the proliferation of alveolar epithelial progenitors after acute lung injury. Cell Biol Int. 2019;43(10):1174–83. https://doi.org/10.1002/cbin.11098.

Article  CAS  PubMed  Google Scholar 

Ishii M, Tsuchiya T, Doi R, Morofuji Y, Fujimoto T, Muto H, et al. Increased in vitro intercellular barrier function of lung epithelial cells using adipose-derived mesenchymal stem/stromal cells. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13081264.

Article  PubMed  PubMed Central  Google Scholar 

Jia X, Wu B, Huang J, Fan L, Yang M, Xu W. YAP and Wnt3a independently promote AECIIs proliferation and differentiation by increasing nuclear beta-catenin expression in experimental bronchopulmonary dysplasia. Int J Mol Med. 2021;47(1):195–206. https://doi.org/10.3892/ijmm.2020.4791.

Article  CAS  PubMed  Google Scholar 

Kasper M, Barth K. Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. 2017. Biosci Rep. https://doi.org/10.1042/BSR20171301.

留言 (0)

沒有登入
gif