Anders HJ, Saxena R, Zhao MH, Parodis I, Salmon JE, Mohan C. Lupus nephritis. Nat Rev Dis Primers. 2020;6(1):7. https://doi.org/10.1038/s41572-019-0141-9.
Bagshaw SM, Laupland KB, Doig CJ, Mortis G, Fick GH, Mucenski M, et al. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study. Crit Care. 2005;9(6):R700–9. https://doi.org/10.1186/cc3879.
Article PubMed PubMed Central Google Scholar
Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121(11):4210–21. https://doi.org/10.1172/JCI45161.
Article CAS PubMed PubMed Central Google Scholar
Bonventre JV, Vaidya VS, Schmouder R, Feig P, Dieterle F. Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol. 2010;28(5):436–40. https://doi.org/10.1038/nbt0510-436.
Article CAS PubMed PubMed Central Google Scholar
Chen J, Ning Y, Zhang H, Song N, Gu Y, Shi Y, et al. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. Life Sci. 2019a;239: 117034. https://doi.org/10.1016/j.lfs.2019.117034.
Article CAS PubMed Google Scholar
Chen XY, Zhang J, Zhu JS. The role of m(6)A RNA methylation in human cancer. Mol Cancer. 2019b;18(1):103. https://doi.org/10.1186/s12943-019-1033-z.
Article PubMed PubMed Central Google Scholar
Chen J, Xu C, Yang K, Gao R, Cao Y, Liang L, et al. Inhibition of ALKBH5 attenuates I/R-induced renal injury in male mice by promoting Ccl28 m6A modification and increasing Treg recruitment. Nat Commun. 2023;14(1):1161. https://doi.org/10.1038/s41467-023-36747-y.
Article CAS PubMed PubMed Central Google Scholar
Choudhury D, Tuncel M, Levi M. Diabetic nephropathy—a multifaceted target of new therapies. Discov Med. 2010;10(54):406–15.
Cui YH, Yang S, Wei J, Shea CR, Zhong W, Wang F, et al. Autophagy of the m6A mRNA demethylase FTO is impaired by low-level arsenic exposure to promote tumorigenesis. Nat Commun. 2021;12(1):2183. https://doi.org/10.1038/s41467-021-22469-6.
Article CAS PubMed PubMed Central Google Scholar
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–5. https://doi.org/10.1073/pnas.71.10.3971.
Article CAS PubMed PubMed Central Google Scholar
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–6. https://doi.org/10.1038/nature11112.
Article CAS PubMed Google Scholar
Feng C, Wang Z, Liu C, Liu S, Wang Y, Zeng Y, et al. Integrated bioinformatical analysis, machine learning and in vitro experiment-identified m6A subtype, and predictive drug target signatures for diagnosing renal fibrosis. Front Pharmacol. 2022;13: 909784. https://doi.org/10.3389/fphar.2022.909784.
Article CAS PubMed PubMed Central Google Scholar
Gu HF. Genetic and epigenetic studies in diabetic kidney disease. Front Genet. 2019;10:507. https://doi.org/10.3389/fgene.2019.00507.
Article CAS PubMed PubMed Central Google Scholar
Hammad FT. The long-term renal effects of short periods of unilateral ureteral obstruction. Int J Physiol Pathophysiol Pharmacol. 2022;14(2):60–72.
PubMed PubMed Central Google Scholar
Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 2019;566(7743):270–4. https://doi.org/10.1038/s41586-019-0916-x.
Article CAS PubMed PubMed Central Google Scholar
Hu J, Lieb JD, Sancar A, Adar S. Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution. Proc Natl Acad Sci U S A. 2016;113(41):11507–12. https://doi.org/10.1073/pnas.1614430113.
Article CAS PubMed PubMed Central Google Scholar
Hu J, Qiu D, Yu A, Hu J, Deng H, Li H, et al. YTHDF1 is a potential pan-cancer biomarker for prognosis and immunotherapy. Front Oncol. 2021;11: 607224. https://doi.org/10.3389/fonc.2021.607224.
Article CAS PubMed PubMed Central Google Scholar
Hu J, Wang Q, Fan X, Zhen J, Wang C, Chen H, et al. Long noncoding RNA ENST00000436340 promotes podocyte injury in diabetic kidney disease by facilitating the association of PTBP1 with RAB3B. Cell Death Dis. 2023;14(2):130. https://doi.org/10.1038/s41419-023-05658-7.
Article CAS PubMed PubMed Central Google Scholar
Jiang L, Li X, Wang S, Yuan Z, Cheng J. The role and regulatory mechanism of m6A methylation in the nervous system. Front Genet. 2022a;13: 962774. https://doi.org/10.3389/fgene.
Article CAS PubMed PubMed Central Google Scholar
Jiang L, Liu X, Hu X, Gao L, Zeng H, Wang X, et al. METTL3-mediated m6A modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy. Mol Ther. 2022b;30(4):1721–40. https://doi.org/10.1016/j.ymthe.2022.01.002.
Article CAS PubMed PubMed Central Google Scholar
Kaur R, Singh R. Mechanistic insights into CKD-MBD-related vascular calcification and its clinical implications. Life Sci. 2022;311(Pt B): 121148. https://doi.org/10.1016/j.lfs.2022.121148.
Article CAS PubMed Google Scholar
Kopp JB, Anders HJ, Susztak K, Podestà MA, Remuzzi G, Hildebrandt F, et al. Podocytopathies. Nat Rev Dis Primers. 2020;6(1):68. https://doi.org/10.1038/s41572-020-0196-7.
Article PubMed PubMed Central Google Scholar
Kumari R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Prasad R, et al. mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovasc Res. 2022;118(7):1680–92. https://doi.org/10.1093/cvr/cvab160.
Article CAS PubMed Google Scholar
Kurbegovic A, Trudel M. The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease. Cell Signal. 2020;71: 109594. https://doi.org/10.1016/j.cellsig.2020.109594.
Article CAS PubMed Google Scholar
Li X, Fan X, Yin X, Liu H, Yang Y. Alteration of N6-methyladenosine epitranscriptome profile in unilateral ureteral obstructive nephropathy. Epigenomics. 2020;12(14):1157–73. https://doi.org/10.2217/epi-2020-0126.
Article CAS PubMed Google Scholar
Li C, Jiang Z, Hao J, Liu D, Hu H, Gao Y, et al. Role of N6-methyl-adenosine modification in mammalian embryonic development. Genet Mol Biol. 2021a;44(2): e20200253. https://doi.org/10.1590/1678-4685-GMB-2020-0253.
Article CAS PubMed PubMed Central Google Scholar
Li CM, Li M, Zhao WB, Ye ZC, Peng H. Alteration of N6-methyladenosine RNA profiles in cisplatin-induced acute kidney injury in mice. Front Mol Biosci. 2021b;8: 654465. https://doi.org/10.3389/fmolb.2021.654465.
Article CAS PubMed PubMed Central Google Scholar
Li M, Deng L, Xu G. METTL14 promotes glomerular endothelial cell injury and diabetic nephropathy via m6A modification of α-klotho. Mol Med. 2021c;27(1):106. https://doi.org/10.1186/s10020-021-00365-5.
Article CAS PubMed PubMed Central Google Scholar
Li N, Tang H, Wu L, Ge H, Wang Y, Yu H, et al. Chemical constituents, clinical efficacy and molecular mechanisms of the ethanol extract of Abelmoschus manihot flowers in treatment of kidney diseases. Phytother Res. 2021d;35(1):198–206. https://doi.org/10.1002/ptr.6818.
Article CAS PubMed Google Scholar
Li X, Jiang Y, Sun X, Wu Y, Chen Z. METTL3 is required for maintaining β-cell function. Metabolism. 2021e;116: 154702. https://doi.org/10.1016/j.metabol.2021.154702.
Article CAS PubMed Google Scholar
Li X, Li Y, Wang Y, He X. The m6A demethylase FTO promotes renal epithelial-mesenchymal transition by reducing the m6A modification of lncRNA GAS5. Cytokine. 2022;159: 156000. https://doi.org/10.1016/j.cyto.2022.156000.
Article CAS PubMed Google Scholar
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5. https://doi.org/10.1038/nchembio.1432.
Comments (0)