Human and environmental safety of carbon nanotubes across their life cycle

Takakura, A. et al. Strength of carbon nanotubes depends on their chemical structures. Nat. Commun. 10, 3040 (2019).

Article  Google Scholar 

Ruoff, R. S. & Lorents, D. C. Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995).

Article  CAS  Google Scholar 

Dresselhaus, M. S., Dresselhaus, G. & Saito, R. Physics of carbon nanotubes. Carbon 33, 883–891 (1995).

Article  CAS  Google Scholar 

Kim, P., Shi, L., Majumdar, A. & McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001).

Article  CAS  Google Scholar 

Frank, S., Poncharal, P., Wang, Z. L. & Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).

Article  CAS  Google Scholar 

Liang, W. et al. Fabry–Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

Article  CAS  Google Scholar 

O’Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

Article  Google Scholar 

Yakobson, B. I. & Couchman, L. S. Persistence length and nanomechanics of random bundles of nanotubes. J. Nanopart. Res. 8, 105–110 (2006).

Article  CAS  Google Scholar 

Chen, J. S. et al. Room temperature lasing from semiconducting single-walled carbon nanotubes. ACS Nano 16, 16776–16783 (2022).

Article  CAS  Google Scholar 

Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R. & Ajayan, P. M. Carbon nanotube filters. Nat. Mater. 3, 610–614 (2004).

Article  CAS  Google Scholar 

Galassi, T. V. et al. An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo. Sci. Transl. Med. 10, eaar2680 (2018).

Article  Google Scholar 

Kim, M. et al. Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01364-9 (2023).

Kim, M. et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Biomed. Eng. 6, 267–275 (2022).

CAS  Google Scholar 

Tan, J. M., Bullo, S., Fakurazi, S. & Hussein, M. Z. Preparation, characterisation and biological evaluation of biopolymer-coated multi-walled carbon nanotubes for sustained-delivery of silibinin. Sci. Rep. 10, 16941 (2020).

Article  CAS  Google Scholar 

Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 363, 619–623 (2019).

Article  CAS  Google Scholar 

Safaee, M. M., Gravely, M. & Roxbury, D. A wearable optical microfibrous biomaterial with encapsulated nanosensors enables wireless monitoring of oxidative stress. Adv. Funct. Mater. 31, 2006254 (2021).

Article  CAS  Google Scholar 

Xu, S., Liu, J. & Li, Q. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 76, 16–23 (2015).

Article  Google Scholar 

Maheswaran, R. & Shanmugavel, B. P. A critical review of the role of carbon nanotubes in the progress of next-generation electronic applications. J. Electron. Mater. 51, 2786–2800 (2022).

Article  CAS  Google Scholar 

Choi, C. et al. Twistable and stretchable sandwich structured fiber for wearable sensors and supercapacitors. Nano Lett. 16, 7677–7684 (2016).

Article  CAS  Google Scholar 

Global carbon nanotubes market size by type (SWCNT, MWCNT), by application (plastics & composites, electrical & electronics, energy), by geographic scope and forecast. Verified Market Research Report 32499 (Verified Market Research, 2022).

Zeng, L. & Attwood, J. Advanced Materials Primer: Carbon Nanotubes (BloombergNEF, 2021).

Valsami-Jones, E. & Lynch, I. How safe are nanomaterials? Science 350, 388–389 (2015).

Article  CAS  Google Scholar 

Heller, D. A. et al. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat. Nanotechnol. 15, 164–166 (2020).

Article  CAS  Google Scholar 

Hansen, S. F. & Lennquist, A. SIN List criticism based on misunderstandings. Nat. Nanotechnol. 15, 418–418 (2020).

Article  CAS  Google Scholar 

Hansen, S. F. & Lennquist, A. Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern. Nat. Nanotechnol. 15, 3–4 (2020).

Article  CAS  Google Scholar 

Fadeel, B. & Kostarelos, K. Grouping all carbon nanotubes into a single substance category is scientifically unjustified. Nat. Nanotechnol. 15, 164–164 (2020).

Article  CAS  Google Scholar 

Castillo, A. P. D. & Krop, H. EU observatory for nanomaterials: A constructive view on future regulation. European Trade Union Institute (ETUI) Research Paper - Policy Brief 4/2017 (ETUI, 2018).

National Institute for Occupational Safety and Health (NIOSH). Occupational exposure to carbon nanotubes and nanofibers. Curr. Intell. Bull. 65 (2013).

Realizing the promise of carbon nanotubes: challenges, opportunities, and the pathway to commercialization. Technical Interchange Proceedings (National Nanotechnology Initiative, 2014).

US Environmental Protection Agency (US EPA).Multi-walled carbon nanotubes; significant new use rule. Fed. Reg. 76, 26186–26192 (2011).

Google Scholar 

US Environmental Protection Agency (US EPA). Significant new use rule on certain chemical substances. Fed. Reg. 82, 45990–45995 (2017).

Google Scholar 

US Environmental Protection Agency (US EPA). Toxic substances control act inventory status of carbon nanotubes. Fed. Reg. 73, 64946–64947 (2008).

Google Scholar 

Castagnola, V. et al. Towards a classification strategy for complex nanostructures. Nanoscale Horiz. 2, 187–198 (2017).

Article  CAS  Google Scholar 

He, M. et al. Precise determination of the threshold diameter for a single-walled carbon nanotube to collapse. ACS Nano 8, 9657–9663 (2014).

Article  CAS  Google Scholar 

Zhao, X. et al. Smallest carbon nanotube is 3 A in diameter. Phys. Rev. Lett. 92, 125502 (2004).

Article  CAS  Google Scholar 

Balasubramanian, K. & Burghard, M. Chemically functionalized carbon nanotubes. Small 1, 180–192 (2005).

Article  CAS  Google Scholar 

Kalbac, M., Green, A. A., Hersam, M. C. & Kavan, L. Probing charge transfer between shells of double-walled carbon nanotubes sorted by outer-wall electronic type. Chemistry 17, 9806–9815 (2011).

Article  CAS  Google Scholar 

Moore, K. E., Tune, D. D. & Flavel, B. S. Double-walled carbon nanotube processing. Adv. Mater. 27, 3105–3137 (2015).

Article  CAS  Google Scholar 

Shi, W. et al. Superconductivity in bundles of double-wall carbon nanotubes. Sci. Rep. 2, 625 (2012).

Article  Google Scholar 

Noffsinger, J. & Cohen, M. L. Electron-phonon coupling and superconductivity in double-walled carbon nanotubes. Phys. Rev. B 83, 165420 (2011).

Article  Google Scholar 

Hecht, D., Hu, L. & Grüner, G. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89, 133112 (2006).

Article  Google Scholar 

Harrah, D. M. & Swan, A. K. The role of length and defects on optical quantum efficiency and exciton decay dynamics in single-walled carbon nanotubes. ACS Nano 5, 647–655 (2011).

Article  CAS  Google Scholar 

Zhang, R., Zhang, Y. & Wei, F. Controlled synthesis of ultralong carbon nanotubes with perfect structures and extraordinary properties. Acc. Chem. Res. 50, 179–189 (2017).

Article  CAS  Google Scholar 

Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

Article  CAS  Google Scholar 

Scott, C. D., Arepalli, S., Nikolaev, P. & Smalley, R. E. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl. Phys. A 72, 573–580 (2001).

Article  CAS  Google Scholar 

Nikolaev, P. et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).

Article  CAS  Google Scholar 

Lolli, G. et al. Tailoring (n,m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 110, 2108–2115 (2006).

Article  CAS  Google Scholar 

Saito, T. et al. Selective diameter control of single-walled carbon nanotubes in the gas-phase synthesis. J. Nanosci. Nanotechnol. 8, 6153–6157 (2008).

Article  CAS  Google Scholar 

Graf, A. et al. Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 105, 593–599 (2016).

Article  CAS  Google Scholar 

Pénicaud, A., Poulin, P., Derré, A., Anglaret, E. & Petit, P. Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8–9 (2005).

Article  Google Scholar 

Ramesh, S. et al. Dissolution of pristine single walled carbon nanotubes in superacids by direct protonation. J. Phys. Chem. B 108, 8794–8798 (2004).

Article  CAS  Google Scholar 

Li, Y.-L., Kinloch, I. A. & Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304, 276–278 (2004).

Article  CAS  Google Scholar 

Headrick, R. J. et al. Versatile acid solvents for pristine carbon nanotube assembly. Sci. Adv. 8, eabm3285 (2022).

Article  CAS 

留言 (0)

沒有登入
gif