Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).
Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).
Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).
Article CAS PubMed Google Scholar
George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).
Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).
Brahlek, M. et al. What is in a name: defining ‘high entropy’ oxides. Apl. Mater. 10, 110902 (2022).
Yang, B. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022).
Article CAS PubMed Google Scholar
Aamlid, S. S., Oudah, M., Rottler, J. & Hallas, A. M. Understanding the role of entropy in high entropy oxides. J. Am. Chem. Soc. 145, 5991–6006 (2023).
Article CAS PubMed Google Scholar
Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017).
Spurling, R. J., Lass, E. A., Wang, X. & Page, K. Entropy-driven phase transitions in complex ceramic oxides. Phys. Rev. Mater. 6, 090301 (2022).
Ma, D., Grabowski, B., Körmann, F., Neugebauer, J. & Raabe, D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90–97 (2015).
Körmann, F., Ikeda, Y., Grabowski, B. & Sluiter, M. H. F. Phonon broadening in high entropy alloys. npj Comput. Mater. 3, 1–9 (2017).
Chang, C.-C. et al. Lattice distortion or cocktail effect dominates the performance of tantalum-based high-entropy nitride coatings. Appl. Surf. Sci. 577, 151894 (2022).
Braun, J. L. et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Adv. Mater. 30, 1805004 (2018).
Ning, Y. et al. Achieving high energy storage properties in perovskite oxide via high-entropy design. Ceram. Int. 49, 12214–12223 (2023).
Bérardan, D., Franger, S., Meena, A. K. & Dragoe, N. Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A 4, 9536–9541 (2016).
Xiang, H. et al. High-entropy ceramics: present status, challenges, and a look forward. J. Adv. Ceram. 10, 385–441 (2021).
Wang, J. et al. P2-type layered high-entropy oxides as sodium-ion cathode materials. Mater. Futur. 1, 035104 (2022).
Zhang, R. et al. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature 610, 67–73 (2022).
Article CAS PubMed Google Scholar
Zhao, C., Ding, F., Lu, Y., Chen, L. & Hu, Y. High‐entropy layered oxide cathodes for sodium‐ion batteries. Angew. Chem. Int. Ed. 59, 264–269 (2020).
Fu, F. et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries. Nat. Commun. 13, 2826 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ding, F. et al. Using high-entropy configuration strategy to design na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 144, 8286–8295 (2022).
Article CAS PubMed Google Scholar
Ma, Y. et al. High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14, 2883–2905 (2021).
Amiri, A. & Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 9, 782–823 (2021).
Lin, L. et al. High‐entropy sulfides as electrode materials for Li‐ion batteries. Adv. Energy Mater. 12, 2103090 (2022).
Sarkar, A. et al. High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018).
Article PubMed PubMed Central Google Scholar
Cui, Y. et al. High entropy fluorides as conversion cathodes with tailorable electrochemical performance. J. Energy Chem. 72, 342–351 (2022).
Petrovičovà, B. et al. High-entropy spinel oxides produced via sol-gel and electrospinning and their evaluation as anodes in Li-ion batteries. Appl. Sci. 12, 5965 (2022).
Triolo, C., Xu, W., Petrovičovà, B., Pinna, N. & Santangelo, S. Evaluation of entropy‐stabilized (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O oxides produced via solvothermal method or electrospinning as anodes in lithium‐ion batteries. Adv. Funct. Mater. 32, 2202892 (2022).
Wang, K. et al. Synergy of cations in high entropy oxide lithium ion battery anode. Nat. Commun. 14, 1487 (2023).
Article CAS PubMed PubMed Central Google Scholar
Wang, Q. et al. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 12, 2433–2442 (2019).
Lun, Z. et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021).
Article CAS PubMed Google Scholar
Ma, Y. et al. Resolving the role of configurational entropy in improving cycling performance of multicomponent hexacyanoferrate cathodes for sodium‐ion batteries. Adv. Funct. Mater. 32, 2202372 (2022).
Ma, Y. et al. High‐entropy metal–organic frameworks for highly reversible sodium storage. Adv. Mater. 33, 2101342 (2021).
Du, M. et al. High-entropy prussian blue analogues and their oxide family as sulfur hosts for lithium–sulfur batteries. Angew. Chem. 134, e202209350 (2022).
Xing, J., Zhang, Y., Jin, Y. & Jin, Q. Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage. Nano Res. 16, 2486–2494 (2023).
Varzi, A., Mattarozzi, L., Cattarin, S., Guerriero, P. & Passerini, S. 3D porous Cu–Zn alloys as alternative anode materials for Li-Ion batteries with superior low T performance. Adv. Energy Mater. 8, 1701706 (2018).
Wei, Y. et al. Embedding the high entropy alloy nanoparticles into carbon matrix toward high performance Li-ion batteries. J. Alloy. Compd. 938, 168610 (2023).
Osenciat, N. et al. Charge compensation mechanisms in Li‐substituted high‐entropy oxides and influence on Li superionic conductivity. J. Am. Ceram. Soc. 102, 6156–6162 (2019).
Biesuz, M. et al. Ni-free high-entropy rock salt oxides with Li superionic conductivity. J. Mater. Chem. A 10, 23603–23616 (2022).
Grzesik, Z. et al. Defect structure and transport properties in (Co,Cu,Mg,Ni,Zn)O high entropy oxide. J. Eur. Ceram. Soc. 39, 4292–4298 (2019).
Zeng, Y. et al. High-entropy mechanism to boost ionic conductivity. Science 378, 1320–1324 (2022).
Article CAS PubMed Google Scholar
Stockham, M. P., Dong, B. & Slater, P. R. High entropy lithium garnets — testing the compositional flexibility of the lithium garnet system. J. Solid. State Chem. 308, 122944 (2022).
Kuo, C.-H. et al. A novel garnet-type high-entropy oxide as air-stable solid electrolyte for Li-ion batteries. Apl. Mater. 10, 121104 (2022).
Sastre, J. et al. Lithium garnet Li7La3Zr2O12 electrolyte for all‐solid‐state batteries: closing the gap between bulk and thin film Li‐ion conductivities. Adv. Mater. Interfaces 7, 2000425 (2020).
Comments (0)