Evaluation and molecular docking study of two flavonoids from Oroxylum indicum (L.) Kurz and their semi-synthetic derivatives as histone deacetylase inhibitors

Dinda B, Silsarma I, Dinda M, Rudrapaula P (2015) Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: from traditional uses to scientific data for its commercial exploitation. J Ethnopharmacol 161:255–278. https://doi.org/10.1016/j.jep.2014.12.027

Article  CAS  PubMed  Google Scholar 

Kamkaen N, Wilkinson JM, Cavanagh HM (2006) Cytotoxic effect of four Thai edible plants on mammalian cell proliferation. Thai Pharma Health Sci J 1:189–195

Google Scholar 

Luitel H, Rajbhandari M, Kalauni SK, Awale S, Masuda K, Gewali MB (2010) Chemical constituents from Oroxylum indicum (L.) Kurz of Nepalese origin. Scientific World 8:66–68. https://doi.org/10.3126/sw.v8i8.3852

Article  Google Scholar 

Lawania RD, Mishra A, Gupta R (2010) Oroxylum indicum: a review Pharmacognosy J 2:304–310. https://doi.org/10.1016/S0975-3575(10)80121-X

Article  Google Scholar 

Jagetia GC (2021) A review on the medicinal and pharmacological properties of traditional ethnomedicinal plant sonopath, Oroxylum indicum. Sinusitis 5:71–89. https://doi.org/10.3390/sinusitis5010009

Article  Google Scholar 

Hildmann C, Riester D, Schwienhors A (2007) Histone deacetylases—an important class of cellular regulators with a variety of functions. Microbiol Biotechnol 75:487–497. https://doi.org/10.1007/s00253-007-0911-2

Article  CAS  Google Scholar 

Colussi C, IIIi B, Spallotta J, Farsetti A, Grasselli A, Mai A, Capogrossi M, Gaetanoa C, (2010) Histone deacetylase inhibitors: keeping momentum for neuromuscular and cardiovascular diseases treatment. Pharmacol Res 62:3–10. https://doi.org/10.1016/j.phrs.2010.02.014

Article  CAS  PubMed  Google Scholar 

Wang F, Wang C, Wang J, Zou Y, Chen X, Liu T, He B (2019) Nɛ-acetyl lysine derivatives with zinc binding groups as novel HDAC inhibitors. R Soc Open Sci 6:190338–219347. https://doi.org/10.1098/rsos.190338

Article  CAS  PubMed  PubMed Central  Google Scholar 

McLaughlin F, Thangue NBL (2004) Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol 68:1139–1144. https://doi.org/10.1016/j.bcp.2004.05.034

Article  CAS  PubMed  Google Scholar 

Wang F, Lu W, Zhang T, Dong J, Gao H, Li P, Wang S, Zhang J (2013) Development of novel ferulic acid derivatives as potent histone deacetylase inhibitors. Bioorg Med Chem 21:6973–6980. https://doi.org/10.1016/j.bmc.2013.09.021

Article  CAS  PubMed  Google Scholar 

Qiu X, Xiao X, Li N, Li Y (2017) Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases. Prog Neuro-Psychoph 72:60–72. https://doi.org/10.1016/j.pnpbp.2016.09.002

Article  CAS  Google Scholar 

Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: What are the cancer relevant targets? Cancer Lett 227:8–21. https://doi.org/10.1016/j.canlet.2008.08.016

Article  CAS  Google Scholar 

De Ruijter AJM, Gennip VAH, Caron HN, Kemp S, Kuilenburg ABPV (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–739. https://doi.org/10.1042/bj20021321

Article  PubMed  PubMed Central  Google Scholar 

Zwergel C, Valente S, Jacob C, Mai A (2015) Emerging approaches for histone Deacetylase inhibitor drug discovery. Expert Opin Drug Discov 10:599–613. https://doi.org/10.1517/17460441.2015.1038236

Article  CAS  PubMed  Google Scholar 

Abdizadeh T, Kalani MR, Abnous K, Tayarani-Najaran Z, Khashyarmanesh BZ, Abdizadeh R, Ghodsi R, Hadizadeh F (2017) Design, synthesis, and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem 132:42–62. https://doi.org/10.1016/j.ejmech.2017.03.024

Article  CAS  PubMed  Google Scholar 

Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784. https://doi.org/10.1038/nrd2133

Article  CAS  PubMed  Google Scholar 

Paris M, Porcelloni M, Binaschi M, Fattori D (2008) Histone deacetylase inhibitors: from bench to clinic. J Med Chem 51:1505–1529. https://doi.org/10.1021/jm7011408

Article  CAS  PubMed  Google Scholar 

Fishcher A, Sananbenesi F, Mungenast A, Tsai LH (2010) Targeting the correct HDACs to treat cognitive disorders. Trends Pharmacol Sci 31:605–617. https://doi.org/10.1016/j.tips.2010.09.003

Article  CAS  Google Scholar 

Ververis K, Hiong A, Karagiannis TC, Licciardi PV (2013) Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biol Targets Ther 7:47–60. https://doi.org/10.2147/BTT.S29965

Article  CAS  Google Scholar 

Linciano P, Benedetti R, Pinzi L, Russo F, Chianese U, Sorbi C, Altucci L, Rastelli G, Brasili L, Franchini S (2021) Investigation of the effect of different linker chemotypes on the inhibition of histone deacetylases (HDACs). Bioorg Chem 106:104462. https://doi.org/10.1016/j.bioorg.2020.104462

Article  CAS  PubMed  Google Scholar 

Abdalla MM (2016) Medicinal significance of naturally occurring cyclopeptides. J Nat Med 70:708–720. https://doi.org/10.1007/s11418-016-1001-5

Article  CAS  PubMed  Google Scholar 

Son H, Chang IM, Lee SI, Yang HD (2007) Moon HI (2007) Pomiferin, histone deacetylase inhibitor isolated from the fruits of Maclura pomifera. Bioorg Med Chem Lett 17:4753–4755. https://doi.org/10.1016/j.bmcl.2007.06.060

Article  CAS  PubMed  Google Scholar 

Kummboonma P, Senawong T, Saenglee S, Yenjai C, Phaosiri C (2017) Identification of phenolic compounds from Zingiber offinale and their derivatives as histone deacetylase inhibitors and antioxidants. Med Chem Res 26:650–661. https://doi.org/10.1007/s00044-017-1785-1

Article  CAS  Google Scholar 

Berger A, Venturelli S, Kallnischkies M, Böcker A, Busch C, Weilanda T, Noor S, Leischner C, Weiss TS, Lauera UM, Bischoff SC, Bitzer M (2013) Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases. J Nutr Biochem 24:977–985. https://doi.org/10.1016/j.jnutbio.2012.07.001

Article  CAS  PubMed  Google Scholar 

Ali RM, Houghton PJ, Raman A, Hoult JRS (1998) Antimicrobial and anti-inflammatory activities of extracts and constituents of Oroxylum indicum (L.) Vent. Phytomedicine 5:375–381. https://doi.org/10.1016/S0944-7113(98)80020-2

Article  CAS  Google Scholar 

Santi MD, Bouzidi C, Gorod NS, Puiatti M, Michel S, Grougnet R, Ortega MG (2019) In vitro biological evaluation and molecular docking studies of natural and semisynthetic flavones from Gardenia oudiepe (Rubiaceae) as tyrosinase inhibitors. Bioorg Chem 82:241–245. https://doi.org/10.1016/j.bioorg.2018.10.034

Article  CAS  PubMed  Google Scholar 

Lee YE, Kodama T, Morita H (2023) Novel insights into the antibacterial activities of cannabinoid biosynthetic intermediates, olivetolic acid, and its alkyl-chain derivatives. J Nat Med 77:298–305. https://doi.org/10.1016/j.bioorg.2020.104370

Article  CAS  PubMed  Google Scholar 

Babu TH, Manjulatha K, Kumar GS, Hymavathi A, Tiwari AK, Purohit M, Rao JM, Babu KS (2010) Gastroprotective flavonoid constituents from Oroxylum indicum Vent. Bioorg Med Chem Lett 20:117–120. https://doi.org/10.1016/j.bmcl.2009.11.024

Article  CAS  Google Scholar 

Zou XQ, Peng SM, Hu CP, Tan LF, Yuan Q, Deng HW, Li YJ (2010) Synthesis, characterization and vasculoprotective effects of nitric oxide-donating derivatives of chrysin. Bioorg Med Chem 18:3020–3025. https://doi.org/10.1016/j.bmc.2010.03.056

Article  CAS  PubMed  Google Scholar 

Babu KS, Babu TH, Srinivas PV, Kishore KH, Murthy USN, Rao JM (2006) Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg Med Chem Lett 16:221–224. https://doi.org/10.1016/j.bmcl.2005.09.009

Article  CAS  Google Scholar 

Somsakeesit L-o, Senawong T, Kumboonma P, Saenglee S, Samankul A, Senawong G, Yenjai C, Phaosiri C (2020) Influence of side-chain changes on histone Deacetylase inhibitory and cytotoxicity activities of curcuminoid derivatives. Bioorg Med Chem Lett 30:127171–127176. https://doi.org/10.1016/j.bmcl.2020.127171

Article  CAS  PubMed  Google Scholar 

Asgar MA, Senawong G, Sripa B, Senawong T (2015) Scopoletin potentiates the anti- cancer effects of cisplatin against cholangiocarcinoma cell lines. Bangladesh J Pharmacol 10:69–77. https://doi.org/10.3329/bjp.v10i1.21202

Article  Google Scholar 

Kattar SD, Surdi LM, Zabierek A, Methot JL, Middleton RE, Hughes B et al (2009) Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI- 1:2) optimization. Bioorg Med Chem Lett 19:1168–1172. https://doi.org/10.1016/j.bmcl.2008.12.083

Article  CAS  PubMed  Google Scholar 

Chakrabarti A, Oehme I, Witt O, Oliveira G, Sippl W, Romier C, Pierce RT, Jung M (2015) HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol Sci 36:481–492. https://doi.org/10.1016/j.tips.2015.04.013

Article  CAS  PubMed  Google Scholar 

Ganai SA, Sheikh FA, Baba ZA (2021) Plant flavone chrysin as an emerging histone deacetylase inhibitor for prosperous epigenetic-based anticancer therapy. Phytother Res 35:823–834. https://doi.org/10.1002/ptr.6869

Article  CAS  PubMed 

留言 (0)

沒有登入
gif