Fuentes RG, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M (2015) Scopadulciol, isolated from Scoparia dulcis, induces β-catenin degradation and overcomes tumor necrosis factor-related apoptosis ligand resistance in AGS human gastric adenocarcinoma cells. J Nat Prod 78:864–872
Article CAS PubMed Google Scholar
Zhang Y, Wang X (2020) Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol 13:165
Article PubMed PubMed Central Google Scholar
Ashihara E, Takada T, Maekawa T (2015) Targeting the canonical Wnt/β-catenin pathway in hematological malignancies. Cancer Sci 106:665–671
Article CAS PubMed PubMed Central Google Scholar
Wakabayashi R, Hattori Y, Hosogi S, Toda Y, Takata K, Ashihara E (2021) A novel dipeptide type inhibitor of the Wnt/β-catenin pathway suppresses proliferation of acute myelogenous leukemia cells. Biochem Biophys Res Commun 535:73–79
Article CAS PubMed Google Scholar
Chhabra R (2015) Cervical cancer stem cells: opportunities and challenges. J Cancer Res Clin Oncol 141:1889–1897
Article CAS PubMed Google Scholar
Ohishi K, Toume K, Arai MA, Koyano T, Kowithayakorn T, Mizoguchi T, Itoh M, Ishibashi M (2015) 9-Hydroxycanthin-6-one, a β-carboline alkaloid from Eurycoma longifolia, is the first Wnt signal inhibitor through activation of glycogen synthase kinase 3β without depending on casein kinase 1α. J Nat Prod 78:1139–1146
Article CAS PubMed Google Scholar
Parker TW, Neufeld KL (2020) APC controls Wnt-induced β-catenin destruction complex recruitment in human colonocytes. Sci Rep 10:2957
Article CAS PubMed PubMed Central ADS Google Scholar
He TC, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512
Article CAS PubMed ADS Google Scholar
Kim PJ, Plescia J, Clevers H, Fearon ER, Altieri DC (2003) Survivin and molecular pathogenesis of colorectal cancer. Lancet 362:205–209
Article CAS PubMed Google Scholar
Matsumoto T, Imahori D, Saito Y, Zhang W, Ohta T, Yoshida T, Nakayama Y, Ashihara E, Watanabe T (2020) Cytotoxic activities of sesquiterpenoids from the aerial parts of Petasites japonicus against cancer stem cells. J Nat Med 74:689–701
Article CAS PubMed Google Scholar
Matsumoto T, Imahori D, Ohnishi E, Okayama M, Kitagawa T, Ohta T, Yoshida T, Kojima N, Yamashita M, Watanabe T (2022) Chemical structures and induction of cell death via heat shock protein inhibition of the prenylated phloroglucinol derivatives isolated from Hypericum erectum. Fitoterapia 156:105097
Matsumoto T, Kitagawa T, Imahori D, Yoshikawa H, Okayama M, Kobayashi M, Kojima N, Yamashita M, Watanabe T (2021) Cell death-inducing activities via Hsp inhibition of the sesquiterpenes isolated from Valeriana fauriei. J Nat Med 75:942–948
Article CAS PubMed Google Scholar
Matsumoto T, Ohnishi E, Kitagawa T, Okayama M, Saito Y, Yoshikawa H, Ohta T, Yoshida T, Nakayama Y, Watanabe T (2023) Azaphilones produced by Penicillium maximae with their cell death-inducing activity on Adriamycin-treated cancer cell. Genes Environ 45:5
Article CAS PubMed PubMed Central Google Scholar
Matsumoto T, Kitagawa T, Imahori D, Matsuzaki A, Saito Y, Ohta T, Yoshida T, Nakayama Y, Ashihara E, Watanabe T (2021) Linderapyrone: a Wnt signal inhibitor isolated from Lindera umbellata. Bioorg Med Chem Lett 45:128161
Article CAS PubMed Google Scholar
Lott K, Cingolani G (2011) The importinβbinding domain as a master regulator of nucleocytoplasmic transport. Biochim Biophys Acta 1813:1578–1592
Article CAS PubMed Google Scholar
Harel A, Forbes DJ (2004) Importin beta: conducting a much larger cellular symphony. Mol Cell 16:319–330
García-García M, Sánchez-Perales S, Jarabo P, Calvo E, Huyton T, Fu L, Ng SC, Sotodosos-Alonso L, Vázquez J, Casas-Tintó S, Görlich D, Echarri A, Del Pozo MA (2022) Mechanical control of nuclear import by importin-7 is regulated by its dominant cargo YAP. Nat Commun 13:1174
Article PubMed PubMed Central ADS Google Scholar
Li SR, Gyselman VG, Dorudi S, Bustin SA (2000) Elevated levels of RanBP7 mRNA in colorectal carcinoma are associated with increased proliferation and are similar to the transcription pattern of the proto-oncogene c-myc. Biochem Biophys Res Commun 271:537–543
Article CAS PubMed Google Scholar
Chen J, Hu Y, Teng Y, Yang BK (2021) Increased nuclear transporter importin 7 contributes to the tumor growth and correlates with CD8 T cell infiltration in cervical cancer. Front Cell Dev Biol 9:732786
Article PubMed PubMed Central Google Scholar
Xu L, Yao X, Chen X, Lu P, Zhang B, Ip YT (2007) Msk is required for nuclear import of TGF-β/BMP-activated Smads. J Cell Biol 178:981–994
Article CAS PubMed PubMed Central Google Scholar
Hirota M, Watanabe K, Hamada S, Sun Y, Strizzi L, Mancino M, Nagaoka T, Gonzales M, Seno M, Bianco C, Salomon DS (2008) Smad2 functions as a co-activator of canonical Wnt/β-catenin signaling pathway independent of Smad4 through histone acetyltransferase activity of p300. Cell Signall 20:1632–1641
Lei S, Dubeykovskiy A, Chakladar A, Wojtukiewicz L, Wang TC (2004) The murine gastrin promoter is synergistically activated by transforming growth factor-β/Smad and Wnt signaling pathways. J Biol Chem 279:42492–42502
Article CAS PubMed Google Scholar
Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo JL, Oh SW, Kim HY, Moon SH, Ha JR, Kahn M (2004) A small molecule inhibitor of β-catenin/CREB-binding protein transcription. Proc Natl Acad Sci U S A 101:12682–12687
Article CAS PubMed PubMed Central ADS Google Scholar
Shigeyasu K, Okugawa Y, Toden S, Boland CR, Goel A (2017) Exportin-5 functions as an oncogene and a potential therapeutic target in colorectal cancer. Clin Cancer Res 23:1312–1322
Article CAS PubMed Google Scholar
Yao X, Chen X, Cottonham C, Xu L (2008) Preferential utilization of imp7/8 in nuclear import of Smads. J Biol Chem 283:22867–22874
Article CAS PubMed PubMed Central Google Scholar
Tian H, Liu C, Yu J, Han J, Du J, Liang S, Wang W, Liu Q, Lian R, Zhu T, Wu S, Tao T, Ye Y, Zhao J, Yang Y, Zhu X, Cai J, Wu J, Li M (2023) PHF14 enhances DNA methylation of SMAD7 gene to promote TGF-β-driven lung adenocarcinoma metastasis. Cell Discov 9:41
Article CAS PubMed PubMed Central Google Scholar
Chen Q, Guo H, Jiang H, Hu Z, Yang X, Yuan Z, Gao Y, Zhang G, Bai Y (2023) S100A2 induces epithelial-mesenchymal transition and metastasis in pancreatic cancer by coordinating transforming growth factorβsignaling in SMAD4-dependent manner. Cell Death Discov 9:356
Article CAS PubMed PubMed Central Google Scholar
Yang H, Yue GGL, Yuen KK, Gao S, Leung PC, Wong CK, Lau CBS (2023) Mechanistic insights into the anti-tumor and anti-metastatic effects of Patrinia villosa aqueous extract in colon cancer via modulation of TGF-β R1-smad2/3-E-cadherin and FAK-RhoA-cofilin pathways. Phytomedicine 117:154900
Article CAS PubMed Google Scholar
Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harbor Perspect Biol 8:a021873
Soderholm JF, Bird SL, Kalab P, Sampathkumar Y, Hasegawa K, Uehara-Bingen M, Weis K, Heald R (2011) Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem Biol 6:700–708
Article CAS PubMed PubMed Central Google Scholar
Martiniano B (2021) Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets. J Biomol Struct Dyn 40:8375–8383
Van Der Watt PJ, Chi A, Stelma T, Stowell C, Strydom E, Carden S, Angus L, Hadley K, Lang D, Wei W, Birrer MJ, Trent JO, Leaner VD (2016) Targeting the nuclear import receptor Kpnβ1 as an anticancer therapeutic. Mol Cancer Ther 15:560–573
Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660
Hsu YL, Lin CC, Jiang JK, Lin HH, Lan YT, Wang HS, Yang SH, Chen WS, Lin TC, Lin JK, Lin PC, Chang SC (2019) Clinicopathological and molecular differences in colorectal cancer according to location. Int J Biol Markers 34:47–53
Comments (0)