Kamikihito reduces β-amyloid25–35-induced axon damage via neurotrophic factors

Alzheimer’s Association (2018) Alzheimer’s disease facts and figures. Alzheimer’s Dement. 14:367–429. https://doi.org/10.1016/j.jalz.2018.02.001

Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189. https://doi.org/10.1101/cshperspect.a006189

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi M, Chu F, Zhu F, Zhu J (2022) Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of Alzheimer’s disease: a focus on Aducanumab and Lecanemab. Front Aging Neurosci 14:870517. https://doi.org/10.3389/fnagi.2022.870517

Article  CAS  PubMed  PubMed Central  Google Scholar 

Decourt B, Boumelhem F, Pope ED 3rd, Shi J, Mari Z, Sabbagh MN (2021) Critical appraisal of amyloid lowering agents in AD. Curr Neurol Neurosci Rep 21(8):39. https://doi.org/10.1007/s11910-021-01125-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nogami-Hara A, Kubota K, Takasaki K, Watanabe T, Egahira N, Iba H, Fujikawa R, Katsurabayashi S, Funda Bolukbasi H, Izzettin H-A-K, Iwasaki K (2019) Extract of Yokukansan improves anxiety-like behavior and increases serum brain-derived neurotrophic factor in rats with cerebral ischemia combined with amyloid-42 peptide. J Tradit Chin Med 39(1):50–58

Google Scholar 

Hirata M, Taniguchi C, Watanabe T, Horikawa T, Akizuki Y, Kubota K, Katsurabayashi S, Iwasaki K (2021) Effects of two kinds of Kampo-hozai, ninjinyoeito and kamikihito, on mental disorder-like behaviors in senescence-accelerated mouse prone 8 mice. Tradit Kampo Med 8(2):176–180. https://doi.org/10.1002/tkm2.1288

Article  CAS  Google Scholar 

Tsutsumi S, Watanabe T, Hatae A, Hirata M, Omori H, Taniguchi C, Nagao M, Kubota K, Katsurabayashi S, Iwasaki K (2022) Ninjinyoeito exerts an antidepressant-like effect by enhancing the central noradrenergic system. Tradit Kampo Med 9(1):25–31. https://doi.org/10.1002/tkm2.1306

Article  CAS  Google Scholar 

Kubota K, Watanabe T, Katsurabayashi S, Iwasaki K (2022) Ninjinyoeito reduces β-amyloid25–35-induced axon damage via nerve growth factor. Tradit Kampo Med 9(2):89–97. https://doi.org/10.1002/tkm2.1320

Article  CAS  Google Scholar 

Ishida K (2016) Effect of donepezil and kamikihito combination therapy on cognitive function in Alzheimer’s disease: retrospective study. Tradit Kampo Med 3(2):94–99. https://doi.org/10.1002/tkm2.1045

Article  Google Scholar 

Tohda C, Nakada R, Urano T, Okonogi A, Kuboyama T (2011) Kamikihi-to (KKT) rescues axonal and synaptic degeneration associated with memory impairment in a mouse model of Alzheimer’s disease, 5XFAD. Int J Neurosci 121(12):641–648. https://doi.org/10.3109/00207454.2011.602809

Article  PubMed  Google Scholar 

Egashira N, Manome N, Kurauchi K, Matsumoto Y, Iwasaki K, Mishima K, Shoyama Y, Fujiwara M (2007) Kamikihi-to, a Kampo medicine, ameliorates impairment of spatial memory in rats. Phytother Res 21(2):126–129. https://doi.org/10.1002/ptr.2034

Article  PubMed  Google Scholar 

Watari H, Shimada Y, Tohda C (2014) New treatment for Alzheimer’s disease, kamikihito, reverses amyloid-β-induced progression of tau phosphorylation and axonal atrophy. Evid Based Complement Altern Med 2014:706487. https://doi.org/10.1155/2014/706487

Article  Google Scholar 

Tohda C, Matsumoto N, Zou K, Meselhy MR, Komatsu K (2004) Abeta(25–35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, a metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology 29(5):860–868. https://doi.org/10.1038/sj.npp.1300388

Article  CAS  PubMed  Google Scholar 

Tohda C, Tamura T, Matsuyama S, Komatsu K (2006) Promotion of axonal maturation and prevention of memory loss in mice by extracts of Astragalus mongholicus. Br J Pharmacol 149(5):532–541. https://doi.org/10.1038/sj.bjp.0706865

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuboyama T, Hirotsu K, Arai T, Yamasaki H, Tohda C (2017) Polygalae radix extract prevents axonal degeneration and memory deficits in a transgenic mouse model of Alzheimer’s disease. Front Pharmacol 8:805. https://doi.org/10.3389/fphar.2017.00805

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bekkers JM, Stevens CF (1991) Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc Natl Acad Sci U S A 88(17):7834–7838. https://doi.org/10.1073/pnas.88.17.7834

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406

CAS  PubMed  PubMed Central  Google Scholar 

Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175. https://doi.org/10.1016/j.pharmthera.2013.01.004

Article  CAS  PubMed  Google Scholar 

Wang J, Gu BJ, Masters CL, Wang YJ (2017) A systemic view of Alzheimer disease—insights from amyloid-beta metabolism beyond the brain. Nat Rev Neurol 13(10):612–623

Article  CAS  PubMed  Google Scholar 

Olsson F, Schmidt S, Althoff V, Munter LM, Jin S, Rosqvist S, Lendahl U, Multhaup G, Lundkvist J (2014) Characterization of intermediate steps in amyloid beta (Aβ) production under near-native conditions. J Biol Chem 289(3):1540–1550. https://doi.org/10.1074/jbc.M113.498246

Article  CAS  PubMed  Google Scholar 

Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW (1995) Structure–activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J Neurochem 64(1):253–265. https://doi.org/10.1046/j.1471-4159.1995.64010253.x

Article  CAS  PubMed  Google Scholar 

Kaminsky YG, Marlatt MW, Smith MA, Kosenko EA (2010) Subcellular and metabolic examination of amyloid-β peptides in Alzheimer disease pathogenesis: evidence for Aβ25–35. Exp Neurol 221(1):26–37. https://doi.org/10.1016/j.expneurol.2009.09.005

Article  CAS  PubMed  Google Scholar 

Bibel M, Barde YA (2000) Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev 14(23):2919–2937. https://doi.org/10.1101/gad.841400

Article  CAS  PubMed  Google Scholar 

Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S (2008) New insights into brain BDNF function in normal aging and Alzheimer’s disease. Brain Res Rev 59(1):201–220. https://doi.org/10.1016/j.brainresrev.2008.07.007

Article  CAS  PubMed  Google Scholar 

de Miranda AS, de Barros JLVM, Teixeira AL (2020) Is neurotrophin-3 (NT-3): a potential therapeutic target for depression and anxiety? Expert Opin Ther Targets 24(12):1225–1238. https://doi.org/10.1080/14728222.2020.1846720

Article  CAS  PubMed  Google Scholar 

Yabe T, Tuchida H, Kiyohara H, Takeda T, Yamada H (2003) Induction of NGF synthesis in astrocytes by onjisaponins of Polygala tenuifolia, constituents of kampo (Japanese herbal) medicine, Ninjin-yoei-to. Phytomedicine 10(2–3):106–114. https://doi.org/10.1078/094471103321659799

Article  CAS  PubMed  Google Scholar 

Wu SD, Xia F, Lin XM, Duan KL, Wang F, Lu QL, Cao H, Qian YH, Shi M (2016) Ginsenoside-Rd promotes neurite outgrowth of PC12 cells through MAPK/ERK- and PI3K/AKT-dependent pathways. Int J Mol Sci 17(2):177. https://doi.org/10.3390/ijms17020177

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mao QQ, Zhong XM, Li ZY, Feng CR, Pan AJ, Huang Z (2010) Herbal formula SYJN increases neurotrophin-3 and nerve growth factor expression in brain regions of rats exposed to chronic unpredictable stress. J Ethnopharmacol 131(1):182–186. https://doi.org/10.1016/j.jep.2010.06.019

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif