The immunometabolic ecosystem in cancer

Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–598 (2016).

Article  CAS  PubMed  Google Scholar 

Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019).

Article  CAS  PubMed  Google Scholar 

Philip, M. & Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223 (2022).

Article  CAS  PubMed  Google Scholar 

Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 21, 141–162 (2022).

Article  CAS  PubMed  Google Scholar 

Vasan, K., Werner, M. & Chandel, N. S. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 32, 341–352 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X. & Dang, C. V. Time to hit pause on mitochondria-targeting cancer therapies. Nat. Med. 29, 29–30 (2023).

Article  CAS  PubMed  Google Scholar 

Pavlova, N. N., Zhu, J. & Thompson, C. B. The hallmarks of cancer metabolism: still emerging. Cell Metab. 34, 355–377 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vyas, S., Zaganjor, E. & Haigis, M. C. Mitochondria and cancer. Cell 166, 555–566 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Le, A. et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl Acad. Sci. USA 107, 2037–2042 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hensley, C. T. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson, S. M. et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sellers, K. et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687–698 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Faubert, B. et al. Lactate metabolism in human lung tumors. Cell 171, 358–371 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hui, S. et al. Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Payen, V. L., Mina, E., Van Hee, V. F., Porporato, P. E. & Sonveaux, P. Monocarboxylate transporters in cancer. Mol. Metab. 33, 48–66 (2020).

Article  CAS  PubMed  Google Scholar 

Knudsen, E. S., Balaji, U., Freinkman, E., McCue, P. & Witkiewicz, A. K. Unique metabolic features of pancreatic cancer stroma: relevance to the tumor compartment, prognosis, and invasive potential. Oncotarget 7, 78396–78411 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Bartman, C. R. et al. Slow TCA flux and ATP production in primary solid tumours but not metastases. Nature 614, 349–357 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Birsoy, K. et al. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162, 540–551 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005).

Article  CAS  PubMed  Google Scholar 

Yang, Y. et al. SLC25A1 promotes tumor growth and survival by reprogramming energy metabolism in colorectal cancer. Cell Death Dis. 12, 1108 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zaidi, N., Swinnen, J. V. & Smans, K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 72, 3709–3714 (2012).

Article  CAS  PubMed  Google Scholar 

Martinez-Reyes, I. & Chandel, N. S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wellen, K. E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015).

Article  CAS  PubMed  Google Scholar 

Sciacovelli, M. et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537, 544–547 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xiao, M. et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326–1338 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burnichon, N. et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum. Mol. Genet 19, 3011–3020 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cervera, A. M., Bayley, J. P., Devilee, P. & McCreath, K. J. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol. Cancer 8, 89 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Letouze, E. et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739–752 (2013).

Article  CAS  PubMed  Google Scholar 

Burgener, A. V. et al. SDHA gain-of-function engages inflammatory mitochondrial retrograde signaling via KEAP1-Nrf2. Nat. Immunol. 20, 1311–1321 (2019).

Article  CAS  PubMed  Google Scholar 

Kinch, L., Grishin, N. V. & Brugarolas, J. Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type 2. Cancer Cell 20, 418–420 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hollinshead, K. E. R. et al. Respiratory supercomplexes promote mitochondrial efficiency and growth in severely hypoxic pancreatic cancer. Cell Rep. 33, 108231 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Molina, J. R. et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat. Med. 24, 1036–1046 (2018).

Article  CAS  PubMed  Google Scholar 

Lee, K. M. et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab. 26, 633–647 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif