Comprehensive genomic profiling for oncological advancements by precision medicine

Lee H, Ross JS. The potential role of comprehensive genomic profiling to guide targeted therapy for patients with biliary cancer. Therap Adv Gastroenterol. 2017;10:507–20. https://doi.org/10.1177/1756283X17698090.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kou T, Kanai M, Yamamoto Y, Kamada M, Nakatsui M, Sakuma T, et al. Clinical sequencing using a next-generation sequencing-based multiplex gene assay in patients with advanced solid tumors. Cancer Sci. 2017;108:1440–6. https://doi.org/10.1111/cas.13265.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weinstein IB, Case K. The history of cancer research: introducing an AACR centennial series. Cancer Res. 2008;68:6861–2. https://doi.org/10.1158/0008-5472.CAN-08-2827.

Article  CAS  PubMed  Google Scholar 

Geoffery MC. The cell. 2nd ed. Sunderland: Sinauer Associates Inc; 2000.

Google Scholar 

Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11:685–96. https://doi.org/10.1038/nrg2841.

Article  CAS  PubMed  Google Scholar 

Calabrese C, Davidson NR, Demircioğlu D, Fonseca NA, He Y, Kahles A, et al. Genomic basis for RNA alterations in cancer. Nature. 2020;578:129–36. https://doi.org/10.1038/s41586-020-1970-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comprehensive Genomic Profiling (CGP): Cancer genomic profiling benefits. Illumina n.d. https://www.illumina.com/areas-of-interest/cancer/clinical-cancer-research/cgp.html. Accessed 9 July 2021. Accessed 7 Sept 2021.

Luo W, Tian P, Wang Y, Xu H, Chen L, Tang C, et al. Characteristics of genomic alterations of lung adenocarcinoma in young never-smokers. Int J Cancer. 2018;143:1696–705. https://doi.org/10.1002/ijc.31542.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med. 2020;12:1–19. https://doi.org/10.1186/s13073-019-0703-1.

Article  Google Scholar 

Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M, et al. The growing role of precision and personalized medicine for cancer treatment. Technology. 2018;06:79–100. https://doi.org/10.1142/S2339547818300020.

Article  Google Scholar 

Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treat Rev. 2020;86: 102019. https://doi.org/10.1016/j.ctrv.2020.102019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pal M, Muinao T, Boruah HPD, Mahindroo N. Current advances in prognostic and diagnostic biomarkers for solid cancers: detection techniques and future challenges. Biomed Pharmacother. 2022;146: 112488. https://doi.org/10.1016/j.biopha.2021.112488.

Article  CAS  PubMed  Google Scholar 

Mateo J, Steuten L, Aftimos P, André F, Davies M, Garralda E, et al. Delivering precision oncology to patients with cancer. Nat Med. 2022;28:658–65. https://doi.org/10.1038/s41591-022-01717-2.

Article  CAS  PubMed  Google Scholar 

Rapoport BL, Troncone G, Schmitt F, Nayler SJ. Comprehensive genomic profiling. Oxford: S. Karger Publishers Ltd; 2020.

Book  Google Scholar 

Simon R, Roychowdhury S. Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov. 2013;12:358–69. https://doi.org/10.1038/nrd3979.

Article  CAS  PubMed  Google Scholar 

Treatment. Canadian Cancer Society 2021. www.cancer.ca. https://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/treatment/?region=on. Accessed 8 Sept 2021.

Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther. 2016;38:1551–66. https://doi.org/10.1016/j.clinthera.2016.03.026.

Article  PubMed  Google Scholar 

Looney A-M, Nawaz K, Webster RM. Tumour-agnostic therapies. Nat Rev Drug Discov. 2020;19:383–4. https://doi.org/10.1038/d41573-020-00015-1.

Article  CAS  PubMed  Google Scholar 

Haslam A, Olivier T, Tuia J, Prasad V. Umbrella review of basket trials testing a drug in tumors with actionable genetic biomarkers. BMC Cancer. 2023;23:46. https://doi.org/10.1186/s12885-022-10421-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lodish H, Berk A, Zipursky S. Proto-oncogenes and tumor-suppressor genes. Molecular cell biology. 4th ed. New York: W. H. Freeman; 2000.

Google Scholar 

Jones AS. Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer. Outcome Predict Cancer. 2007. https://doi.org/10.1016/B978-044452855-1/50007-6.

Article  PubMed  Google Scholar 

Raphael BJ, Dobson JR, Oesper L, Vandin F. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome Med. 2014;6:1–17. https://doi.org/10.1186/gm524.

Article  CAS  Google Scholar 

Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142:321–46. https://doi.org/10.5858/arpa.2017-0388-CP.

Article  CAS  PubMed  Google Scholar 

Toufektchan E, Toledo F. The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers. 2018;10:135. https://doi.org/10.3390/cancers10050135.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cadwell C, Zambetti GP. The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene. 2001;277:15–30. https://doi.org/10.1016/S0378-1119(01)00696-5.

Article  CAS  PubMed  Google Scholar 

Perri F, Pisconti S, della Vittoria Scarpati G. P53 mutations and cancer: a tight linkage. Ann Transl Med 2016. https://doi.org/10.21037/atm.2016.12.40.

Zhu G, Pan C, Bei J-X, Li B, Liang C, Xu Y, et al. Mutant p53 in cancer progression and targeted therapies. Front Oncol. 2020;10: 595187. https://doi.org/10.3389/fonc.2020.595187.

Article  PubMed  PubMed Central  Google Scholar 

Schneider K, Zelly K, Nichols KE, Garber J. Li-Fraumeni Syndrome . In: Adam M, Ardinger H, Pagon R, editors. GeneReviews, Seattle: University of Washington; 2019.

Correa H. Li-fraumeni syndrome. J Pediatr Genet. 2016. https://doi.org/10.1055/s-0036-1579759.

Article  PubMed  PubMed Central  Google Scholar 

Liang X, Vacher S, Boulai A, Bernard V, Baulande S, Bohec M, et al. Targeted next-generation sequencing identifies clinically relevant somatic mutations in a large cohort of inflammatory breast cancer. Breast Cancer Res. 2018;20:1–12. https://doi.org/10.1186/s13058-018-1007-x.

Article  CAS  Google Scholar 

Leading Diagnostics Companies Join Forces to Establish Access to Comprehensive Genomic Profiling Coalition. Laboratory Corporation of America Holdings n.d. https://ir.labcorp.com/news-releases/news-release-details/leading-diagnostics-companies-join-forces-establish-access. Accessed 7 Sept 2021.

Loscalzo J, Handy DE. Epigenetic modifications: basic mechanisms and role in cardiovascular disease (2013 Grover Conference Series). Pulm Circ. 2014;4:169–74. https://doi.org/10.1086/675979.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kamińska K, Nalejska E, Kubiak M, Wojtysiak J, Żołna Ł, Kowalewski J, et al. Prognostic and predictive epigenetic biomarkers in oncology. Mol Diagn Ther. 2019;23:83–95. https://doi.org/10.1007/s40291-018-0371-7.

Article  CAS  PubMed  Google Scholar 

TruSight Oncology 500 Assay For Pan-Cancer Biomerkers in DNA and RNA . Illumina n.d. https://www.illumina.com/products/by-type/clinical-research-products/trusight-oncology-500.html. Accessed 7 Sept 2021.

Non-Small Cell Lung Cancer Targeted Drug Therapy. American Cancer Society n.d. https://www.cancer.org/cancer/lung-cancer/treating-non-small-cell/targeted-therapies.html#references. Accessed 7 Sept 2021.

Non-Small Cell Lung Cancer Treatment. NCCN Clinical Practice Guidelines in Oncology 2021. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1450. Accessed 7 Sept 2021.

Fransson Å, Glaessgen D, Alfredsson J, Wiman KG, Bajalica-Lagercrantz S, Mohell N. Strong synergy with APR-246 and DNA-damaging drugs in primary cancer cells from patients with TP53 mutant High-Grade Serous ovarian cancer. J Ovarian Res. 2016;9:1–10. https://doi.org/10.1186/s13048-016-0239-6.

Article  CAS  Google Scholar 

Synnott NC, O’Connell D, Crown J, Duffy MJ. COTI-2 reactivates mutant p53 and inhibits growth of triple-negative breast cancer cells. Breast Cancer Res Treat. 2020;179:47–56. https://doi.org/10.1007/s10549-019-05435-1.

Article  CAS  PubMed  Google Scholar 

Pestinger V, Smith M, Sillo T, Findlay JM, Laes J-F, Martin G, et al. Use of an integrated pan-cancer oncology enrichment next-generation sequencing assay to measure tumour mutational burden and detect clinically actionable variants. Mol Diagn Ther. 2020;24:339–49. https://doi.org/10.1007/s40291-020-00462-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Garbutt C, Golkaram M, Kaplan S, Martins M, Casino S, et al. Microsatellite instability testing and lynch syndrome screening for colorectal cancer patients through tumour sequencing. Ann Oncol. 2019;30: v574. https://doi.org/10.1093/annonc/mdz257.001.

Article  Google Scholar 

Cuppens K, Froyen G, Cruys B, Geerdens E, Achten R, Vanbockrijck M, et al. P2.04-76 tumor mutational burden by TSO500 next generation sequencing panel and clinical outcome in non-small cell lung cancer. J Thorac Oncol. 2019;14:S738-9. https://doi.org/10.1016/j.jtho.2019.08.1581.

留言 (0)

沒有登入
gif