Titanium particles in peri-implantitis: distribution, pathogenesis and prospects

Kotsakis, G. A. & Olmedo, D. G. Peri-implantitis is not periodontitis: Scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype. Periodontol 2000 86, 231–240 (2021).

Article  PubMed  Google Scholar 

Jepsen, S. et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 89, S237–s248 (2018).

PubMed  Google Scholar 

Dixon, D. R. & London, R. M. Restorative design and associated risks for peri-implant diseases. Periodontol 2000 81, 167–178 (2019).

Article  PubMed  Google Scholar 

Komatsu, K. et al. Discriminating microbial community structure between peri-implantitis and periodontitis with integrated metagenomic, metatranscriptomic, and network analysis. Front. Cell. Infect. Microbiol. 10, 596490 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Carcuac, O. et al. Experimental periodontitis and peri-implantitis in dogs. Clin. Oral. Implants Res 24, 363–371 (2013).

Article  PubMed  Google Scholar 

Nakajima, H. & Okabe, T. Titanium in dentistry: development and research in the U.S.A. Dent. Mater. J. 15, 77–90 (1996).

Article  PubMed  Google Scholar 

Sarraf, M., Rezvani Ghomi, E., Alipour, S., Ramakrishna, S. & Liana Sukiman, N. A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-Des. Manuf. 5, 371–395 (2022).

Article  Google Scholar 

Franchi, M. et al. Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials 25, 2239–2246 (2004).

Article  PubMed  Google Scholar 

Schwarz, F., Derks, J., Monje, A. & Wang, H. L. Peri-implantitis. J. Periodontol. 89, S267–s290 (2018).

PubMed  Google Scholar 

Berglundh, T. et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 45, S286–s291 (2018).

Article  PubMed  Google Scholar 

Delgado-Ruiz, R & Romanos, G. Potential causes of titanium particle and ion release in implant dentistry: A systematic review. Int. J. Mol. Sci. 19, https://doi.org/10.3390/ijms19113585 (2018).

Romanos, GE, Fischer, GA & Delgado-Ruiz, R. Titanium wear of dental implants from placement, under loading and maintenance protocols. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22031067 (2021).

Möhlhenrich, S. C., Modabber, A., Steiner, T., Mitchell, D. A. & Hölzle, F. Heat generation and drill wear during dental implant site preparation: Systematic review. Br. J. Oral. Maxillofac. Surg. 53, 679–689 (2015).

Article  PubMed  Google Scholar 

Rashad, A. et al. Material attrition and bone micromorphology after conventional and ultrasonic implant site preparation. Clin. Oral. Implants Res 24, 110–114 (2013).

Article  PubMed  Google Scholar 

Alevizakos, V., Mitov, G., Ahrens, A. M. & von See, C. The influence of implant site preparation and sterilization on the performance and wear of implant drills. Int. J. Oral. Maxillofac. Implants 36, 546–552 (2021).

Article  PubMed  Google Scholar 

Allsobrook, O. F., Leichter, J., Holborrow, D. & Swain, M. Descriptive study of the longevity of dental implant surgery drills. Clin. Implant Dent. Relat. Res. 13, 244–254 (2011).

Article  PubMed  Google Scholar 

Oliveira, N., Alaejos-Algarra, F., Mareque-Bueno, J., Ferrés-Padró, E. & Hernández-Alfaro, F. Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills. Clin. Oral. Implants Res 23, 963–969 (2012).

Article  PubMed  Google Scholar 

Möhlhenrich, S. C. et al. Influence of bone density and implant drill diameter on the resulting axial force and temperature development in implant burs and artificial bone: an in vitro study. Oral. Maxillofac. Surg. 20, 135–142 (2016).

Article  PubMed  Google Scholar 

Barrak, F. et al. Particle release from dental implants immediately after placement - An ex vivo comparison of different implant systems. Dent. Mater. 38, 1004–1014 (2022).

Article  PubMed  Google Scholar 

Guan, H., van Staden, R. C., Johnson, N. W. & Loo, Y. C. Dynamic modelling and simulation of dental implant insertion process—A finite element study. Finite Elem. Anal. Des. 47, 886–897 (2011).

Article  Google Scholar 

Gao, S. S., Zhang, Y. R., Zhu, Z. L. & Yu, H. Y. Micromotions and combined damages at the dental implant/bone interface. Int. J. oral. Sci. 4, 182–188 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Alqutaibi, A. Y. & Aboalrejal, A. N. Microgap and micromotion at the implant abutment interface cause marginal bone loss around dental implant but more evidence is needed. J. Evid. Based Dent. Pract. 18, 171–172 (2018).

Article  PubMed  Google Scholar 

Lopes, P. A. et al. Physicochemical and microscopic characterization of implant-abutment joints. Eur. J. Dent. 12, 100–104 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Blum, K. et al. Fatigue induced changes in conical implant-abutment connections. Dent. Mater. 31, 1415–1426 (2015).

Article  PubMed  Google Scholar 

Gratton, D. G., Aquilino, S. A. & Stanford, C. M. Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J. Prosthet. Dent. 85, 47–52 (2001).

Article  PubMed  Google Scholar 

Binon, P. P. The effect of implant/abutment hexagonal misfit on screw joint stability. Int. J. Prosthodont. 9, 149–160 (1996).

PubMed  Google Scholar 

Zipprich, H., Weigl, P., Ratka, C., Lange, B. & Lauer, H. C. The micromechanical behavior of implant-abutment connections under a dynamic load protocol. Clin. Implant Dent. Relat. Res. 20, 814–823 (2018).

Article  PubMed  Google Scholar 

Huang, HH et al. Blood coagulation on titanium dioxide films with various crystal structures on titanium implant surfaces. Cells 11, https://doi.org/10.3390/cells11172623 (2022).

Addison, O. et al. Do ‘passive’ medical titanium surfaces deteriorate in service in the absence of wear? J. R. Soc., Interface 9, 3161–3164 (2012).

Article  PubMed  Google Scholar 

Valente, M. L., Lepri, C. P. & dos Reis, A. C. In vitro microstructural analysis of dental implants subjected to insertion torque and pullout test. Braz. Dent. J. 25, 343–345 (2014).

Article  PubMed  Google Scholar 

Feng, B. et al. Characterization of surface oxide films on titanium and bioactivity. J. Mater. Sci. Mater. Med. 13, 457–464 (2002).

Article  PubMed  Google Scholar 

Alrabeah, G. O., Knowles, J. C. & Petridis, H. The effect of platform switching on the levels of metal ion release from different implant-abutment couples. Int. J. oral. Sci. 8, 117–125 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Ramel, C. F. et al. Surface roughness of dental implants and treatment time using six different implantoplasty procedures. Clin. Oral. Implants Res 27, 776–781 (2016).

Article  PubMed  Google Scholar 

Dhaliwal, J. S. et al. Microbial biofilm decontamination on dental implant surfaces: A mini review. Front. Cell. Infect. Microbiol. 11, 736186 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Louropoulou, A., Slot, D. E. & Van der Weijden, F. A. Titanium surface alterations following the use of different mechanical instruments: a systematic review. Clin. Oral. Implants Res 23, 643–658 (2012).

Article  PubMed  Google Scholar 

Ronay, V., Merlini, A., Attin, T., Schmidlin, P. R. & Sahrmann, P. In vitro cleaning potential of three implant debridement methods. Simulation of the non-surgical approach. Clin. Oral. Implants Res 28, 151–155 (2017).

Article  PubMed  Google Scholar 

Mouhyi, J., Dohan Ehrenfest, D. M. & Albrektsson, T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin. Implant Dent. Relat. Res 14, 170–183 (2012).

Article  PubMed  Google Scholar 

Mombelli, A., Hashim, D. & Cionca, N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin. Oral. Implants Res 29, 37–53 (2018).

Article  PubMed  Google Scholar 

Wheelis, S. E. et al. Effects of decontamination solutions on the surface of titanium: investigation of surface morphology, composition, and roughness. Clin. Oral. Implants Res 27, 329–340 (2016).

Article  PubMed  Google Scholar 

Chen, W. Q., Zhang, S. M. & Qiu, J. Surface analysis and corrosion behavior of pure titanium under fluoride exposure. J. Prosthet. Dent. 124, 239.e231–239.e238 (2020).

Article  Google Scholar 

Chen, X. et al. Elucidating the corrosion-related degradation mechanisms of a Ti-6Al-4V dental implant. Dent. Mater. 36, 431–441 (2020).

Article  PubMed  Google Scholar 

Barbieri, M. et al. Corrosion behavior of dental implants immersed into human saliva: preliminary results of an in vitro study. Eur. Rev. Med. Pharmacol. Sci. 21, 3543–3548 (2017).

PubMed  Google Scholar 

Faverani, L. P. et al. Effect of bleaching agents and soft drink on titanium surface topography. J. Biomed. Mater. Res. B Appl. Biomater. 102, 22–30 (2014).

Article  PubMed  Google Scholar 

Siddiqui, D. A. et al. Evaluation of oral microbial corrosion on the surface degradation of dental implant materials. J. Periodontol. 90, 72–81 (2019).

Article  PubMed  Google Scholar 

Alhamad, M, Barão, VAR, Sukotjo, C, Cooper, LF & Mathew, MT. Ti-ions and/or particles in saliva potentially aggravate dental implant corrosion. Materials (Basel, Switzerland)

留言 (0)

沒有登入
gif