McKiernan, E. X., McKiernan, F. & Jones, M. L. Psychological profiles and motives of adults seeking orthodontic treatment. Int. J. Adult Orthodon. Orthognath. Surg. 7, 187–198 (1992).
Proffit, W. R., Fields, H. W. & Moray, L. J. Prevalence of malocclusion and orthodontic treatment need in the United States: estimates from the NHANES III survey. Int J. Adult Orthodon. Orthognath. Surg. 13, 97–106 (1998).
Reitan, K. Effects of force magnitude and direction of tooth movement on different alveolar bone types. Angle Orthod. 34, 244–255 (1964).
Meikle, M. C. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur. J. Orthod. 28, 221–240 (2006).
Kraiwattanapong, K. & Samruajbenjakun, B. Tissue response resulting from different force magnitudes combined with corticotomy in rats. Angle Orthod. 89, 797–803 (2019).
Article PubMed PubMed Central Google Scholar
Akl, H. E., El-Beialy, A. R., El-Ghafour, M. A., Abouelezz, A. M. & El Sharaby, F. A. Root resorption associated with maxillary buccal segment intrusion using variable force magnitudes. Angle Orthod. 91, 733–742 (2021).
Article PubMed PubMed Central Google Scholar
Gonzales, C. et al. Force magnitude and duration effects on amount of tooth movement and root resorption in the rat molar. Angle Orthod. 78, 502–509 (2008).
Theodorou, C. I., Kuijpers-Jagtman, A. M., Bronkhorst, E. M. & Wagener, F. A. D. T. Optimal force magnitude for bodily orthodontic tooth movement with fixed appliances: A systematic review. Am. J. Orthod. Dentofac. Orthop. 156, 582–592 (2019).
Cesur, M. G. et al. Comparison of BALP, CTX-I, and IL-4 levels around miniscrew implants during orthodontic tooth movement between two different amounts of force. Angle Orthod. 89, 630–636 (2019).
Article PubMed PubMed Central Google Scholar
Yee, J. A., Türk, T., Elekdağ-Türk, S., Cheng, L. L. & Darendeliler, M. A. Rate of tooth movement under heavy and light continuous orthodontic forces. Am. J. Orthod. Dentofac. Orthop. 136, 150.e151–150.e159 (2009).
Kraiwattanapong, K. & Samruajbenjakun, B. Effects of different force magnitudes on corticotomy-assisted orthodontic tooth movement in rats. Angle Orthod. 88, 632–637 (2018).
Article PubMed PubMed Central Google Scholar
Krishnan, V. & Davidovitch, Z. E. Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofac. Orthop. 129, 469.e461–469.432 (2006).
Henneman, S., Von den Hoff, J. W. & Maltha, J. C. Mechanobiology of tooth movement. Eur. J. Orthod. 30, 299–306 (2008).
Article CAS PubMed Google Scholar
Li, Z. et al. Stress distribution and collagen remodeling of periodontal ligament during orthodontic tooth movement. Front. Pharmacol. 10, 1263 (2019).
Article PubMed PubMed Central Google Scholar
Alikhani, M. et al. Saturation of the biological response to orthodontic forces and its effect on the rate of tooth movement. Orthod. Craniofac. Res. 18, 8–17 (2015).
King, G. J., Keeling, S. D., McCoy, E. A. & Ward, T. H. Measuring dental drift and orthodontic tooth movement in response to various initial forces in adult rats. Am. J. Orthod. Dentofac. Orthop. 99, 456–465 (1991).
Wu, J. L., Liu, Y. F., Peng, W., Dong, H. Y. & Zhang, J. X. A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis. J. Zhejiang Univ. Sci. B 19, 535–546 (2018).
Article PubMed PubMed Central Google Scholar
Li, M. et al. Investigation of optimal orthodontic force at the cellular level through three-dimensionally cultured periodontal ligament cells. Eur. J. Orthod. 38, 366–372 (2016).
Zhang, H., Cui, J. W., Lu, X. L. & Wang, M. Q. Finite element analysis on tooth and periodontal stress under simulated occlusal loads. J. Oral Rehabil. 44, 526–536 (2017).
Article CAS PubMed Google Scholar
Pan, S. et al. Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis. Front. Pharmacol. 13, 1098851 (2022).
Article CAS PubMed Google Scholar
Pani, P. et al. IL-1B(3954) polymorphism and red complex bacteria increase IL-1β (GCF) levels in periodontitis. J. Periodontal Res. 56, 501–511 (2021).
Article CAS PubMed PubMed Central Google Scholar
Brodzikowska, A., Górski, B. & Bogusławska-Kapała, A. Association between IL-1 Gene Polymorphisms and Stage III Grade B Periodontitis in Polish Population. Int. J. Environ. Res. Public Health 19, 14687 (2022).
Article CAS PubMed PubMed Central Google Scholar
von Böhl, M. & Kuijpers-Jagtman, A. M. Hyalinization during orthodontic tooth movement: a systematic review on tissue reactions. Eur. J. Orthod. 31, 30–36, https://doi.org/10.1093/ejo/cjn080 (2009).
Goldsmith, C. S. & Bell-Pedersen, D. Diverse roles for MAPK signaling in circadian clocks. Adv. Genet. 84, 1–39 (2013).
Article CAS PubMed Google Scholar
Xie, Y. et al. Orthodontic force-induced BMAL1 in PDLCs is a vital osteoclastic activator. J. Dent. Res. 101, 177–186 (2022).
Article CAS PubMed Google Scholar
Ren, Y., Maltha, J. C. & Kuijpers-Jagtman, A. M. Optimum force magnitude for orthodontic tooth movement: a systematic literature review. Angle Orthod. 73, 86–92 (2003).
Kalajzic, Z. et al. Effect of cyclical forces on the periodontal ligament and alveolar bone remodeling during orthodontic tooth movement. Angle Orthod. 84, 297–303 (2014).
Cattaneo, P. M., Dalstra, M. & Melsen, B. Moment-to-force ratio, center of rotation, and force level: A finite element study predicting their interdependency for simulated orthodontic loading regimens. Am. J. Orthod. Dentofac. Orthop. 133, 681–689 (2008).
Yoshida, N., Jost-Brinkmann, P.-G., Koga, Y., Mimaki, N. & Kobayashi, K. Experimental evaluation of initial tooth displacement, center of resistance, and center of rotation under the influence of an orthodontic force. Am. J. Orthod. Dentofac. Orthop. 120, 190–197 (2001).
Schneider, J., Geiger, M. & Sander, F.-G. Numerical experiments on long-time orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 121, 257–265 (2002).
Meyer, B. N., Chen, J. & Katona, T. R. Does the center of resistance depend on the direction of tooth movement? Am. J. Orthod. Dentofac. Orthop. 137, 354–361 (2010).
Verna, C., Cattaneo, P. M. & Dalstra, M. Corticotomy affects both the modus and magnitude of orthodontic tooth movement. Eur. J. Orthod. 40, 107–112 (2018).
Abdul Wahab, R. M. et al. Enzyme activity profiles and ELISA analysis of biomarkers from human saliva and gingival crevicular fluid during orthodontic tooth movement using self-ligating brackets. Oral. Health Dent. Manag 13, 194–199 (2014).
Keng, F.-Y., Quick, A. N., Swain, M. V. & Herbison, P. A comparison of space closure rates between preactivated nickel-titanium and titanium-molybdenum alloy T-loops: a randomized controlled clinical trial. Eur. J. Orthod. 34, 33–38 (2012).
Falkensammer, F. et al. Impact of extracorporeal shock-wave therapy on the stability of temporary anchorage devices in adults: a single-center, randomized, placebo-controlled clinical trial. Am. J. Orthod. Dentofac. Orthop. 146, 413–422 (2014).
Liu, X. et al. Effects of upper-molar distalization using clear aligners in combination with Class II elastics: a three-dimensional finite element analysis. BMC Oral Health 22, 546 (2022).
Article CAS PubMed PubMed Central Google Scholar
Kohno, T., Matsumoto, Y., Kanno, Z., Warita, H. & Soma, K. Experimental tooth movement under light orthodontic forces: rates of tooth movement and changes of the periodontium. J. Orthod. 29, 129–135 (2002).
Article CAS PubMed Google Scholar
Viecilli, R. F., Kar-Kuri, M. H., Varriale, J., Budiman, A. & Janal, M. Effects of initial stresses and time on orthodontic external root resorption. J. Dent. Res. 92, 346–351 (2013).
Article CAS PubMed Google Scholar
Hazan-Molina, H., Gabet, Y., Aizenbud, I., Aizenbud, N. & Aizenbud, D. Orthodontic force and extracorporeal shock wave therapy: assessment of orthodontic tooth movement and bone morphometry in a rat model. Arch. Oral Biol. 134, 105327 (2022).
Article CAS PubMed Google Scholar
Murphy, C. A. et al. Effect of corticision and different force magnitudes on orthodontic tooth movement in a rat model. Am. J. Orthod. Dentofac. Orthop. 146, 55–66 (2014).
Ueda, M. et al. Involvement of interleukins-17 and -34 in exacerbated orthodontic root resorption by jiggling force during rat experimental tooth movement. J. World Fed. Orthod. 9, 47–55 (2020).
Comments (0)