Ultrastructural Changes in Hippocampal Region CA1 Neurons After Exposure to Permissive Hypercapnia and/or Normobaric Hypoxia

Bento LM, Fagian MM, Vercesi AE, Gontijo JA (2007) Effects of NH4Cl-induced systemic metabolic acidosis on kidney mitochondrial coupling and calcium transport in rats. Nephrol Dial Transplant 22(10):2817–2823. https://doi.org/10.1093/ndt/gfm306

Article  CAS  PubMed  Google Scholar 

Boito CA, Fanin M, Gavassini BF, Cenacchi G, Angelini C, Pegoraro E (2007) Biochemical and ultrastructural evidence of endoplasmic reticulum stress in LGMD2I. Virchows Arch 451(6):1047–1055. https://doi.org/10.1007/s00428-007-0515-3

Article  PubMed  Google Scholar 

Chuang IC, Dong HP, Yang RC, Wang TH, Tsai JH, Yang PH, Huang MS (2010) Effect of carbon dioxide on pulmonary vascular tone at various pulmonary arterial pressure levels induced by endothelin-1. Lung 188:199–207

Article  CAS  PubMed  Google Scholar 

Dell RB, Holleran S, Ramakrishnan R (2002) Sample size determination. ILAR J 43:207–213

Article  CAS  PubMed  Google Scholar 

Dittmann K, Mayer C, Rodemann HP (2010) Nuclear EGFR as novel therapeutic target: insights into nuclear translocation and function. Strahlenther Onkol 186(1):1–6. https://doi.org/10.1007/s00066-009-2026-4

Article  PubMed  Google Scholar 

Jung ME, Mallet RT (2018) Intermittent hypoxia training: Powerful, non-invasive cerebroprotection against ethanol withdrawal excitotoxicity. Respir Physiol Neurobiol 256:67–78

Article  CAS  PubMed  Google Scholar 

Kang JJ, Fung ML, Zhang K, Lam CS, Wu SX, Huang XF, Yang SJ, Wong-Riley MTT, Liu YY (2020) Chronic intermittent hypoxia alters the dendritic mitochondrial structure and activity in the pre-Bötzinger complex of rats. FASEB J 34(11):14588–14601. https://doi.org/10.1096/fj.201902141R

Article  CAS  PubMed  Google Scholar 

Kitamura M (2008) Endoplasmic reticulum stress and unfolded protein response in renal pathophysiology: Janus faces. Am J Physiol Renal Physiol 295(2):F323–F334

Article  CAS  PubMed  Google Scholar 

Kulikov VP, Tregub PP, Bespalov AG, Vvedenskiy AJ (2013) Comparative efficacy of hypoxia, hypercapnia and hypercapnic hypoxia increases body resistance to acute hypoxia in rats. Patol Fiziol Eksp Ter 3:59–61

Google Scholar 

Kulikov VP, Motin Yu G, Tregub PP, Kovzelev PD, Shoshin KA, Zinchenko EK, Chernetsky AE (2018) Combined hypercapnia and hypoxia lead to the acidosis and increase the amount HIF-1a in rat hippocampus. IM Sechenov Russian J Physiol 104(11):1347–1355

Google Scholar 

Lavoie C, Paiement J (2008) Topology of molecular machines of the endoplasmic reticulum: a compilation of proteomics and cytological data. Histochem Cell Biol 129(2):117–128. https://doi.org/10.1007/s00418-007-0370-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lukyanova L, Germanova E, Khmil N et al (2021) Signaling role of mitochondrial enzymes and ultrastructure in the formation of molecular mechanisms of adaptation to hypoxia. Int J Mol Sci 22(16):8636

Article  CAS  PubMed  PubMed Central  Google Scholar 

Motin YG, Lepilov AV, Bgatova NP, Zharikov AY, Motina NV, Lapii GA, Lushnikova EL, Nepomnyashchikh LM (2016) Development of endoplasmic reticulum stress during experimental oxalate nephrolithiasis. Bull Exp Biol Med 160(3):381–385. https://doi.org/10.1007/s10517-016-3176-x

Article  CAS  PubMed  Google Scholar 

Obrenovitch TP (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–247. https://doi.org/10.1152/physrev.00039.2006

Article  CAS  PubMed  Google Scholar 

Pruimboom L, Muskiet FAJ (2018) Intermittent living: the use of ancient challenges as a vaccine against the deleterious effects of modern life—a hypothesis. Med Hypotheses 120:28–42

Article  PubMed  Google Scholar 

Rybnikova E, Samoilov M (2015) Current insights into the molecular mechanisms of hypoxic pre- and postconditioning using hypobaric hypoxia. Front Neurosci 9:388

Article  PubMed  PubMed Central  Google Scholar 

Rybnikova EA, Nalivaeva MY, Zenko NN (2022) Intermittent hypoxic training as an effective tool for increasing the adaptive potential, endurance and working capacity of the brain. Front Neurosci 16:941740

Article  PubMed  PubMed Central  Google Scholar 

Schuldiner M, Schwappach B (2013) From rags to riches—the history of the endoplasmic reticulum. Biochim Biophys Acta 1833(11):2389–2391. https://doi.org/10.1016/j.bbamcr.2013.03.005

Article  CAS  PubMed  Google Scholar 

Secondo A, Petrozziello T, Tedeschi V, Boscia F, Pannaccione A, Molinaro P, Annunziato L (2020) Nuclear localization of NCX: role in Ca2+ handling and pathophysiological implications. Cell Calcium 86:102143. https://doi.org/10.1016/j.ceca.2019.102143

Article  CAS  PubMed  Google Scholar 

Su Y, Ke C, Li C, Huang C, Wan C (2022) Intermittent hypoxia promotes the recovery of motor function in rats with cerebral ischemia by regulating mitochondrial function. Exp Biol Med (Maywood) 247(15):1364–1378. https://doi.org/10.1177/15353702221098962

Article  CAS  PubMed  Google Scholar 

Tao T, Zhao M, Yang W et al (2014) Neuroprotective effects of therapeutic hypercapnia on spatial memory and sensorimotor impairment via anti-apoptotic mechanisms after focal cerebral ischemia/reperfusion. Neurosci Lett 24(573):1–6

Article  Google Scholar 

Tregub P, Kulikov V, Bespalov A (2013) Tolerance to acute hypoxia maximally increases in case of joint effect of normobaric hypoxia and permissive hypercapnia in rats. Pathophysiology 20(3):165–170. https://doi.org/10.1016/j.pathophys.2013.09.001

Article  PubMed  Google Scholar 

Tregub P, Kulikov V, Motin Y, Bespalov A, Osipov I (2015) Combined exposure to hypercapnia and hypoxia provides its maximum neuroprotective effect during focal ischemic injury in the brain. J Stroke Cerebrovasc Dis 24(2):381–387. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.003

Article  PubMed  Google Scholar 

Tregub PP, Kulikov VP, Motin YG, Nagibaeva ME, Zabrodina AS (2016) Stress of the endoplasmic reticulum of neurons in stroke can be maximally limited by combined exposure to hypercapnia and hypoxia. Bull Exp Biol Med 161(4):472–475. https://doi.org/10.1007/s10517-016-3441-z

Article  CAS  PubMed  Google Scholar 

Tregub PP, Malinovskaya NA, Osipova ED, Morgun AV, Kulikov VP (2023) Permissive hypercapnia and hypercapnic hypoxia inhibit signaling pathways of neuronal apoptosis in ischemic/hypoxic rats. Mol Biol Rep 50(3):2317–2333. https://doi.org/10.1007/s11033-022-08212-4

Article  CAS  PubMed  Google Scholar 

Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep 3(10):944–950. https://doi.org/10.1093/embo-reports/kvf202

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu XC, Lai J, Wu XF, Jia ZH, Wei C, Wang HT (2011) Effects of Tongxinluo on neuron ultrastructure and endothelial cell self-repairing ability in hypoxia preconditioning mice. Zhongguo Ying Yong Sheng Li Xue Za Zhi 27(4):396–399 (Chinese)

PubMed  Google Scholar 

Yan F, Li J, Chen J, Hu Q, Gu C, Lin W, Chen G (2014) Endoplasmic reticulum stress is associated with neuroprotection against apoptosis via autophagy activation in a rat model of subarachnoid hemorrhage. Neurosci Lett 563:160–165. https://doi.org/10.1016/j.neulet.2014.01.058

Article  CAS  PubMed  Google Scholar 

Zhao YD, Cheng SY, Ou S, Xiao Z, He WJ, Jian-Cui RHZ (2012) Effect of hypobaric hypoxia on the P2X receptors of pyramidal cells in the immature rat hippocampus CA1 sub-field. Brain Inj 26(3):282–290

Article  PubMed  Google Scholar 

Zhong N, Zhang Y, Zhu HF, Zhou ZN (2000) Intermittent hypoxia exposure prevents mtDNA deletion and mitochondrial structure damage produced by ischemia/reperfusion injury. Sheng Li Xue Bao 52(5):375–380

CAS  PubMed  Google Scholar 

Zhou AM, Li WB, Li QJ, Liu HQ, Feng RF, Zhao HG (2004) A short cerebral ischemic preconditioning upregulates adenosine receptors in the hippocampal CA1 region of rats. Neurosci Res 48:397–404

Article  CAS  PubMed  Google Scholar 

Zhou Q, Cao B, Niu L et al (2010) Effects of permissive hypercapnia on transient global cerebral ischemia–reperfusion injury in rats. Anesthesiology 112:288–297

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif