One-pot synthesis and in vitro bioactivity of novel 4-aminopyrazolo[3,4-b]pyridine derivatives as potential antimicrobial compounds

Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387:176–87. https://doi.org/10.1016/S0140-6736(15)00473-0.

Article  CAS  PubMed  Google Scholar 

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18:318–27. https://doi.org/10.1016/S1473-3099(17)30753-3.

Article  PubMed  Google Scholar 

Pristov KE, Ghannoum MA. Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect. 2019;25:792–98. https://doi.org/10.1016/j.cmi.2019.03.028.

Article  CAS  PubMed  Google Scholar 

Bhattacharya S, Sae-Tia S, Fries BC. Candidiasis and mechanisms of antifungal resistance. Antibiotics. 2020;9:312. https://doi.org/10.3390/antibiotics9060312.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samreen, Ahmad I, Malak HA, Abulreesh HH. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J Glob Antimicrob Resist. 2021;27:101–11. https://doi.org/10.1016/j.jgar.2021.08.001.

Article  CAS  PubMed  Google Scholar 

Sharma R, Panigrahi D, Mishra GP. QSAR studies of 7-methyljuglone derivatives as antitubercular agents. Med Chem Res. 2012;21:2006–11. https://doi.org/10.1007/s00044-011-9731-0.

Article  CAS  Google Scholar 

Miethke M, Pieroni M, Weber T, Brönstrup M, Hammann P, Halby L, et al. Towards the sustainable discovery and development of new antibiotics. Nat Rev Chem. 2021;5:726–49. https://doi.org/10.1038/s41570-021-00313-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Terreni M, Taccani M, Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules. 2021;26:2671. https://doi.org/10.3390/molecules26092671.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao B, Li Y, Xu P, Dai Y, Luo C, Sun Y, et al. Discovery of substituted 1H-Pyrazolo[3,4-b]pyridine derivatives as potent and selective FGFR kinase inhibitors. ACS Med Chem Lett. 2016;7:629–34. https://doi.org/10.1021/acsmedchemlett.6b00066.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barghash RF, Eldehna WM, Kovalová M, Vojáčková V, Kryštof V, Abdel-Aziz HA. One-pot three-component synthesis of novel pyrazolo[3,4-b]pyridines as potent antileukemic agents. Eur J Med Chem. 2022;227:113952. https://doi.org/10.1016/j.ejmech.2021.113952.

Article  CAS  PubMed  Google Scholar 

Nafie MS, Amer AM, Mohamed AK, Tantawy ES. Discovery of novel pyrazolo[3,4-b]pyridine scaffold-based derivatives as potential PIM-1 kinase inhibitors in breast cancer MCF-7 cells. Bioorg Med Chem. 2020;28:115828. https://doi.org/10.1016/j.bmc.2020.115828.

Article  CAS  PubMed  Google Scholar 

El-Gohary NS, Gabr MT, Shaaban MI. Synthesis, molecular modeling and biological evaluation of new pyrazolo[3,4-b]pyridine analogs as potential antimicrobial, antiquorum-sensing and anticancer agents. Bioorg Chem. 2019;89:102976. https://doi.org/10.1016/j.bioorg.2019.102976.

Article  CAS  PubMed  Google Scholar 

Hawas SS, El-Gohary NS, Gabr MT, Shaaban MI, El-Ashmawy MB. Synthesis, molecular docking, antimicrobial, antiquorum-sensing and antiproliferative activities of new series of pyrazolo[3,4-b]pyridine analogs. Synth Commun. 2019;49:2466–87. https://doi.org/10.1080/00397911.2019.1618873.

Article  CAS  Google Scholar 

Salem MS, Ali MAM. Novel pyrazolo[3,4-b]pyridine derivatives: synthesis, characterization, antimicrobial and antiproliferative profile. Biol Pharm Bull. 2016;39:473–83. https://doi.org/10.1248/bpb.b15-00586.

Article  CAS  PubMed  Google Scholar 

Al-Zharani M, Al-Eissa MS, Rudayni HA, Ali D, Alkahtani S, Surendrakumar R, et al. Pyrazolo[3,4-b]pyridin-3(2H)-one derivatives: Synthesis and their investigation of mosquito larvicidal activity. J King Saud Univ-Sci. 2022;34:101767. https://doi.org/10.1016/j.jksus.2021.101767.

Article  Google Scholar 

Mohamed LW, Shaaban MA, Zaher AF, Alhamaky SM, Elsahar AM. Synthesis of new pyrazoles and pyrozolo[3,4-b]pyridines as anti-inflammatory agents by inhibition of COX-2 enzyme. Bioorg Chem. 2019;83:47–54. https://doi.org/10.1016/j.bioorg.2018.10.014.

Article  CAS  PubMed  Google Scholar 

Jian X-E, Yang F, Jiang C-S, You W-W, Zhao P-L. Synthesis and biological evaluation of novel pyrazolo[3,4-b]pyridines as cis-restricted combretastatin A-4 analogues. Bioorg Med Chem Lett. 2020;30:127025. https://doi.org/10.1016/j.bmcl.2020.127025.

Article  CAS  PubMed  Google Scholar 

Tuccinardi T, Zizzari AT, Brullo C, Daniele S, Musumeci F, Schenone S, et al. Substituted pyrazolo[3,4-b]pyridines as human A1 adenosine antagonists: Developments in understanding the receptor stereoselectivity. Org Biomol Chem. 2011;9:4448. https://doi.org/10.1039/c0ob01064b.

Article  CAS  PubMed  Google Scholar 

Müller CE, Jacobson KA. Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta - Biomembr. 2011;1808:1290–308. https://doi.org/10.1016/j.bbamem.2010.12.017.

Article  CAS  Google Scholar 

Thompson S-A, Wingrove PB, Connelly L, Whiting PJ, Wafford KA. Tracazolate reveals a novel type of allosteric interaction with recombinant γ-aminobutyric acid A receptors. Mol Pharm. 2002;61:861–9. https://doi.org/10.1124/mol.61.4.861.

Article  CAS  Google Scholar 

Whiting PJ, McAllister G, Vassilatis D, Bonnert TP, Heavens RP, Smith DW, et al. Neuronally restricted RNA splicing regulates the expression of a novel GABA A receptor subunit conferring atypical functional properties. J Neurosci. 1997;17:5027–37. https://doi.org/10.1523/JNEUROSCI.17-13-05027.1997.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Witherington J, Bordas V, Gaiba A, Garton NS, Naylor A, Rawlings AD, et al. 6-Aryl-pyrazolo[3,4-b]pyridines: Potent inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg Med Chem Lett. 2003;13:3055–7. https://doi.org/10.1016/S0960-894X(03)00645-0.

Article  CAS  PubMed  Google Scholar 

Pan T, Xie S, Zhou Y, Hu J, Luo H, Li X, et al. Dual functional cholinesterase and PDE4D inhibitors for the treatment of Alzheimer’s disease: Design, synthesis and evaluation of tacrine-pyrazolo[3,4-b]pyridine hybrids. Bioorg Med Chem Lett. 2019;29:2150–2. https://doi.org/10.1016/j.bmcl.2019.06.056.

Article  CAS  PubMed  Google Scholar 

de Mello H, Echevarria A, Bernardino AM, Canto-Cavalheiro M, Leon LL. Antileishmanial pyrazolopyridine derivatives: Synthesis and structure-activity relationship analysis. J Med Chem. 2004;47:5427–32. https://doi.org/10.1021/jm0401006.

Article  CAS  PubMed  Google Scholar 

Leal B, Afonso IF, Rodrigues CR, Abreu PA, Garrett R, Pinheiro LCS, et al. Antibacterial profile against drug-resistant Staphylococcus epidermidis clinical strain and structure-activity relationship studies of 1H-pyrazolo[3,4-b]pyridine and thieno[2,3-b]pyridine derivatives. Bioorg Med Chem. 2008;16:8196–204. https://doi.org/10.1016/j.bmc.2008.07.035.

Article  CAS  PubMed  Google Scholar 

Sizova EE, Arshinov EV, Kotsareva YA, Glizdinskaya LV, Sagitullina GP. A simple synthesis of 1Н-pyrazolo[3,4-b]pyridines. Chem Heterocycl Compd. 2017;53:1026–32. https://doi.org/10.1007/s10593-017-2165-y.

Article  CAS  Google Scholar 

Bhukya B, Korra R, Guguloth H. Synthesis of novel amide/amino acid functionalized pyrazolo[3,4‐b]pyridine derivatives; their anticancer activity and docking studies. J Heterocycl Chem. 2023;60:872–8. https://doi.org/10.1002/jhet.4636.

Article  CAS  Google Scholar 

Aggarwal R, Mamta, Sumran G. An expeditious one-pot multicomponent synthesis of sterically hindered bis-1,2,4-triazolopyridazines under solvent-free conditions. Arkivoc. 2019;2019:190–9. https://doi.org/10.24820/ark.5550190.p011.009.

Article  CAS  Google Scholar 

Aggarwal R, Kumar V, Bansal A, Sanz D, Claramunt RM. Multi-component solvent-free versus stepwise solvent mediated reactions: Regiospecific formation of 6-trifluoromethyl and 4-trifluoromethyl-1H-pyrazolo[3,4-b]pyridines. J Fluor Chem. 2012;140:31–7. https://doi.org/10.1016/j.jfluchem.2012.04.007.

Article  CAS  Google Scholar 

Aggarwal R, Singh G, Kumar S, McCabe T, Rozas I. Preparation of 4,7-dihydro-1H-pyrazolo[3,4-b]pyridine-5-nitriles in a multicomponent domino process. Chem Sel. 2016;1:5990–4. https://doi.org/10.1002/slct.201601201.

Article  CAS  Google Scholar 

Aggarwal R, Kumar S, Singh G. Multi-component reaction to access a library of polyfunctionally substituted 4,7-dihydropyrazolo[3,4-b]pyridines. Synth Commun. 2019;49:973–85. https://doi.org/10.1080/00397911.2019.1582064.

Article  CAS  Google Scholar 

Baghernejad B. Application of p-toluenesulfonic acid (PTSA) in organic synthesis. Curr Org Chem. 2011;15:3091–7. https://doi.org/10.2174/138527211798357074.

Article  CAS  Google Scholar 

Xie C, Zhang Z, Li D, Gong J, Han X, Liu X, et al. Dimethyl sulfoxide involved one-pot synthesis of quinoxaline derivatives. J Org Chem. 2017;82:3491–99. https://doi.org/10.1021/acs.joc.6b02977.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif