Research progress on the mechanism of anti-myocardial infarction effect and clinical application of effective components of Salvia miltiorrhiza

Dzubur A, Gacic E, Mekic M. Comparison of patients with acute myocardial infarction according to age. Med Arch. 2019;73:23–27.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Liu W, Jin G, Wu Z, Zhang D, Bao Y, et al. Salvia miltiorrhiza polysaccharides alleviates florfenicol induced kidney injury in chicks via inhibiting oxidative stress and apoptosis. Ecotoxicol Environ Saf. 2022;233:113339.

Article  CAS  PubMed  Google Scholar 

Honda Y. Intravascular imaging to guide PCI for acute myocardial infarction: shifting from “whether” to “how”. JACC Cardiovasc Interv. 2021;14:2444–6.

Article  PubMed  Google Scholar 

Komatsu T, Komatsu S, Yaguchi I. Successful percutaneous coronary thrombolytic therapy of myocardial infarction caused by Cabrol conduit graft. Heart Asia. 2014;6:30.

Article  PubMed  PubMed Central  Google Scholar 

Naito S, Demal T, Biancari F. Impact of aortic cross-clamp in coronary bypass surgery. Ann Thorac Surg. 2022;114:607.

Article  PubMed  Google Scholar 

Davierwala PM, Verevkin A, Sgouropoulou S, Hasheminejad E, von Aspern K, Misfeld M, et al. Minimally invasive coronary bypass surgery with bilateral internal thoracic arteries: Early outcomes and angiographic patency. J Thorac Cardiovasc Surg. 2021;162:1109–19.

Article  PubMed  Google Scholar 

Thiene G, Basso C. Myocardial infarction: a paradigm of success in modern medicine. Cardiovasc Pathol. 2010;19:1–5.

Article  PubMed  Google Scholar 

Song M, Cui X, Zhang J, Li Y, Li J, Zang Y, et al. Shenlian extract attenuates myocardial ischaemia-reperfusion injury via inhibiting M1 macrophage polarization by silencing miR-155. Pharm Biol. 2022;60:2011–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan J, Du H, Wan M, Li Z, Zhang Y, Li D, et al. Research progress on anti-inflammatory pharmacological action of components of Salvia miltiorrhiza and its preparations. Drug Eval Res. 2021;44:2322–32.

Google Scholar 

Lin D, Zhang Y, Wang J. Optimization of the combined extraction process of active ingredients in Salvia miltiorrhiza. Chin Tradit Pat Med. 2019;41:1392–4.

Google Scholar 

Yang L, Zhou G, Liu J, Song J, Zhang Z, Huang Q, et al. Tanshinone I and Tanshinone IIA/B attenuate LPS-induced mastitis via regulating the NF-kappaB. Biomed Pharmacother. 2021;137:111353.

Article  CAS  PubMed  Google Scholar 

Zhou J, Jiang YY, Chen H, Wu YC, Zhang L. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Prolif. 2020;53:e12739.

Article  PubMed  Google Scholar 

Zhao G, Zhang H, Ye T, Xiang Z, Yuan Y, Guo Z, et al. Characterization of the radical scavenging and antioxidant activities of danshensu and salvianolic acid B. Food Chem Toxicol. 2008;46:73–81.

Article  CAS  PubMed  Google Scholar 

Nandi SS, Katsurada K, Sharma NM, Anderson DR, Mahata SK, Patel KP. MMP9 inhibition increases autophagic flux in chronic heart failure. Am J Physiol Heart Circ Physiol. 2020;319:H1414–H1437.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang T, Liu M, Gao Y, Li H, Song L, Hou H, et al. Salvianolic acid B inhalation solution enhances antifibrotic and anticoagulant effects in a rat model of pulmonary fibrosis. Biomed Pharmacother. 2021;138:111475.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Wang H, Cui L, Zhang Y, Liu Y, Chu X, et al. Continuing treatment with Salvia miltiorrhiza injection attenuates myocardial fibrosis in chronic iron-overloaded mice. PLoS ONE. 2015;10:e0124061.

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Gao A, Jiao Y, Zhao Y, Yang X. Antitumor effect and molecular mechanism of antioxidant polysaccharides from Salvia miltiorrhiza Bunge in human colorectal carcinoma LoVo cells. Int J Biol Macromol. 2018;108:625–34.

Article  CAS  PubMed  Google Scholar 

Deng C, Shi M, Fu R, Zhang Y, Wang Q, Zhou Y, et al. ABA-responsive transcription factor bZIP1 is involved in modulating biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza. J Exp Bot. 2020;71:5948–62.

Article  CAS  PubMed  Google Scholar 

Ren J, Fu L, Nile SH, Zhang J, Kai G. Salvia miltiorrhiza in treating cardiovascular diseases: a review on its pharmacological and clinical applications. Front Pharmacol. 2019;10:753.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lian B, Zeng R, Chen Y, Liao P, Guo L, Zhang M. Sodium Tanshinone IIA sulfonate for acute myocardial infarction: a systematic review and meta-analysis. J Tradit Chin Med. 2021;41:26–35.

PubMed  Google Scholar 

Li D, Yang Z, Gao S, Zhang H, Fan G. Tanshinone IIA ameliorates myocardial ischemia/reperfusion injury in rats by regulation of NLRP3 inflammasome activation and Th17 cells differentiation. Acta Cir Bras. 2022;37:e370701.

Article  PubMed  PubMed Central  Google Scholar 

Lu J, Shan J, Liu N, Ding Y, Wang P. Tanshinone IIA can inhibit angiotensin II-induced proliferation and autophagy of vascular smooth muscle cells via regulating the MAPK signaling pathway. Biol Pharm Bull. 2019;42:1783–8.

Article  CAS  PubMed  Google Scholar 

Chou SL, Ramesh S, Kuo CH, Ali A, Ho TJ, Chang KP, et al. Tanshinone IIA inhibits Leu27IGF-II-induced insulin-like growth factor receptor II signaling and myocardial apoptosis via estrogen receptor-mediated Akt activation. Environ Toxicol. 2022;37:142–50.

Article  CAS  PubMed  Google Scholar 

Deng H, Yu B, Li Y. Tanshinone IIA alleviates acute ethanol-induced myocardial apoptosis mainly through inhibiting the expression of PDCD4 and activating the PI3K/Akt pathway. Phytother Res. 2021;35:4309–23.

Article  CAS  PubMed  Google Scholar 

Fang Y, Duan C, Chen S, Liu Z, Jiang B, Ai W, et al. Tanshinone-IIA inhibits myocardial infarct via decreasing of the mitochondrial. apoptotic signaling pathway in myocardiocytes. Int J Mol Med. 2021;48. https://doi.org/10.3892/ijmm.2021.4991.

Ding H, Wang Y, Huang Z. Effects of TanshinoneIIA on the expressions of HMGB1, IL-1β and SOD in myocardial ischemia-reperfusion injury in rats. JETCM. 2020;29:776–8.

Google Scholar 

Wang Y. Protective effect of tanshinone II A on myocardial ischemia-reperfusion injury and its effect on JAK2/STAT3 pathway. Chin J Integr Med Cardio/Cereb Dis. 2021;19:1290–6.

Google Scholar 

Hu H, Zhai C, Qian G, Gu A, Liu J, Ying F, et al. Protective effects of tanshinone IIA on myocardial ischemia reperfusion injury by reducing oxidative stress, HMGB1 expression, and inflammatory reaction. Pharm Biol. 2015;53:1752–8.

Article  CAS  PubMed  Google Scholar 

Gao S, Li L, Li L, Ni J, Guo R, Mao J, et al. Effects of the combination of tanshinone IIA and puerarin on cardiac function and inflammatory response in myocardial ischemia mice. J Mol Cell Cardiol. 2019;137:59–70.

Article  CAS  PubMed  Google Scholar 

Tai H, Jiang X, Lan Z, Li Y, Kong L, Yao S, et al. Tanshinone IIA combined with CsA inhibit myocardial cell apoptosis induced by renal ischemia-reperfusion injury in obese rats. BMC Complement Med Ther. 2021;21:100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang D, Liu Y, Zhong G, Wang Y, Zhang T, Zhao Z, et al. Compatibility of Tanshinone IIA and Astragaloside IV in attenuating hypoxia-induced cardiomyocytes injury. J Ethnopharmacol. 2017;204:67–76.

Article  CAS  PubMed  Google Scholar 

Zou H, Cai M, Qian ZM, Zhang Z, Vaughn MG, Wang X, et al. The effects of ambient fine particulate matter exposure and physical activity on heart failure: a risk-benefit analysis of a prospective cohort study. Sci Total Environ. 2022;853:158366.

Article  CAS  PubMed  Google Scholar 

Wu P, Du Y, Xu Z, Zhang S, Liu J, Aa N, et al. Protective effects of sodium tanshinone IIA sulfonate on cardiac function after myocardial infarction in mice. Am J Transl Res. 2019;11:351–60.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Zhang L, Chu W, Wang B, Zhang J, Zhao M, et al. Tanshinone IIA inhibits miR-1 expression through p38 MAPK signal pathway in post-infarction rat cardiomyocytes. Cell Physiol Biochem. 2010;26:991–8.

Article  CAS  PubMed  Google Scholar 

Lan J, Li K, Gresham A, Miao J. Tanshinone IIA sodium sulfonate attenuates inflammation by upregulating circ-Sirt1 and inhibiting the entry of NF-kappaB into the nucleus. Eur J Pharm. 2022;914:174693.

Article  CAS  Google Scholar 

Zhang M, Zheng Y, Chen H, Tu J, Shen Y, Guo J, et al. Sodium tanshinone IIA sulfonate protects rat myocardium against ischemia-reperfusion injury via activation of PI3K/Akt/FOXO3A/Bim pathway. Acta Pharm Sin. 2013;34:1386–96.

Article  CAS  Google Scholar 

Jin YC, Kim CW, Kim YM, Nizamutdinova IT, Ha YM, Kim HJ, et al. Cryptotanshinone, a lipophilic compound of Salvia miltiorrriza root, inhibits TNF-alpha-induced expression of adhesion molecules in HUVEC and attenuates rat myocardial ischemia/reperfusion injury in vivo. Eur J Pharmacol. 2009;614:91–97.

Article  CAS  PubMed  Google Scholar 

Ang KP, Tan HK, Selvaraja M, Kadir AA, Somchit MN, Akim AM, et al. Cryptotanshinone attenuates in vitro oxLDL-induced pre-lesional atherosclerotic events. Planta Med. 2011;77:1782–7.

Article  CAS  PubMed  Google Scholar 

Wang S, Sun L, Zhu Z, Liu J, Ge W, Li B, et al. Cryptotanshinone alleviates myocardial ischemia and reperfusion injury in rats to mitigate ER

留言 (0)

沒有登入
gif