Characterization of novel angiotensin-I converting enzyme inhibitory peptides derived from Taiwan red quinoa (Chenopodium formosanum Koidz.) seed proteins using two sequential bioassay-guided fractionations

Zhang Q, Xing B, Sun M, Zhou B, Ren G, Qin P. Changes in bio-accessibility, polyphenol profile and antioxidants of quinoa and djulis sprouts during in vitro simulated gastrointestinal digestion. Food Sci Nutr. 2020;8:4232–41. https://doi.org/10.1002/fsn3.1718

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong Y-H, Huang Y-L, Liu Y-C, Tsai P-J. Djulis (Chenopodium formosanum Koidz.) water extract and its bioactive components ameliorate dermal damage in UVB-irradiated skin models. BioMed Res Int. 2016;2016:7368797 https://doi.org/10.1155/2016/7368797

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo H, Hao Y, Yang X, Ren G, Richel A. Exploration on bioactive properties of quinoa protein hydrolysate and peptides: a review. Crit Rev Food Sci Nutr. 2023;63:2896–2909. https://doi.org/10.1080/10408398.2021.1982860

Article  CAS  PubMed  Google Scholar 

Guo H, Hao Y, Richel A, Everaert N, Chen Y, Liu M, et al. Antihypertensive effect of quinoa protein under simulated gastrointestinal digestion and peptide characterization. J Sci Food Agric. 2020;100:5569–76. https://doi.org/10.1002/jsfa.10609

Article  CAS  PubMed  Google Scholar 

Wei Y, Liu Y, Li Y, Wang X, Zheng Y, Xu J, et al. A novel antihypertensive pentapeptide identified in quinoa bran globulin hydrolysates: purification, in silico characterization, molecular docking with ACE and stability against different food-processing conditions. Nutrients. 2022;14:2420 https://doi.org/10.3390/nu14122420

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mudgil P, Kilari BP, Kamal H, Olalere OA, FitzGerald RJ, Gan C-Y, et al. Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. J Cereal Sci. 2020;96:103130 https://doi.org/10.1016/j.jcs.2020.103130

Article  CAS  Google Scholar 

Li S, Du G, Shi J, Zhang L, Yue T, Yuan Y. Preparation of antihypertensive peptides from quinoa via fermentation with Lactobacillus paracasei. eFood. 2022;3:e20 https://doi.org/10.1002/efd2.20

Article  Google Scholar 

Li J, Huo X, Zheng Y, Guo Y, Feng C. ACE-inhibitory peptides identified from Quinoa Bran Glutelin-2 Hydrolysates: In silico screening and characterization, inhibition mechanisms of ACE, coordination with zinc ions, and stability. Plant Foods Hum Nutr. 2023;78:419–25. https://doi.org/10.1007/s11130-023-01074-6

Article  CAS  PubMed  Google Scholar 

World Health Organization. Guideline for the pharmacological treatment of hypertension in adults. Geneva: World Health Organization; 2021. p. 1.

Google Scholar 

Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020;396:P1223–49. https://doi.org/10.1016/S0140-6736(20)30752-2

Article  Google Scholar 

Chappell MC. Biochemical evaluation of the renin-angiotensin system: the good, bad, and absolute. Am J Physiol Heart Circ Physiol. 2016;310:H137–52. https://doi.org/10.1152/ajpheart.00618.2015

Article  PubMed  Google Scholar 

Smith CG, Vane JR. The discovery of captopril. FASEB J 2003;17:787–9. https://doi.org/10.1096/fj.03-0093life

Article  Google Scholar 

Fitzgerald RJ, Murray BA. Bioactive peptides and lactic fermentations. Int J Dairy Technol. 2006;59:118–25. https://doi.org/10.1111/j.1471-0307.2006.00250.x

Article  CAS  Google Scholar 

Windarto S, Lee M-C, Nursyam H, Hsu J-L. First report of screening of novel Angiotensin-I converting enzyme inhibitory peptides derived from the red alga Acrochaetium sp. Mar Biotechnol. 2022;24:882–94. https://doi.org/10.1007/s10126-022-10152-w

Article  CAS  Google Scholar 

Ningrum S, Sutrisno A, Hsu J-L. An exploration of angiotensin-converting enzyme (ACE) inhibitory peptides derived from gastrointestinal protease hydrolysate of milk using a modified bioassay-guided fractionation approach coupled with in silico analysis. J Dairy Sci. 2022;105:P1913–28. https://doi.org/10.3168/jds.2021-21112

Article  CAS  Google Scholar 

Suwannapan O, Wachirattanapongmetee K, Thawornchinsombut S, Katekaew S. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from Thai jasmine rice bran protein hydrolysates. Int J Food Sci Technol. 2020;55:2441–50. https://doi.org/10.1111/ijfs.14495

Article  CAS  Google Scholar 

Setayesh-Mehr Z, Asoodeh A. The inhibitory activity of HL-7 and HL-10 peptide from scorpion venom (Hemiscorpius lepturus) on angiotensin converting enzyme: Kinetic and docking study. Bioorg Chem. 2017;75:30–7. https://doi.org/10.1016/j.bioorg.2017.09.006

Article  CAS  PubMed  Google Scholar 

Vercruysse L, Van Camp J, Morel N, Rougé P, Herregods G, Smagghe G. Ala-Val-Phe and Val-Phe: ACE inhibitory peptides derived from insect protein with antihypertensive activity in spontaneously hypertensive rats. Peptides. 2010;31:482–8. https://doi.org/10.1016/j.peptides.2009.05.029

Article  CAS  PubMed  Google Scholar 

Daskaya-Dikmen C, Yucetepe A, Karbancioglu-Guler F, Daskaya H, Ozcelik B. Angiotensin-I-Converting Enzyme (ACE)-inhibitory peptides from plants. Nutrients 2017;9:316 https://doi.org/10.3390/nu9040316.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhat ZF, Kumar S, Bhat HF. Antihypertensive peptides of animal origin: A review. Crit Rev Food Sci Nutr. 2017;57:566–78. https://doi.org/10.1080/10408398.2014.898241

Article  CAS  PubMed  Google Scholar 

Shih Y-H, Chen F-A, Wang L-F, Hsu J-L. Discovery and study of novel antihypertensive peptides derived from Cassia obtusifolia Seeds. J Agric Food Chem. 2019;67:7810–20. https://doi.org/10.1021/acs.jafc.9b01922

Article  CAS  PubMed  Google Scholar 

Chan KC, Issaq HJ. Fractionation of peptides by strong cation-exchange liquid chromatography. In: Zhou M, Veenstra T, editors. Proteomics for Biomarker Discovery. Totowa, NJ: Humana Press; 2013. p. 311–5. https://doi.org/10.1007/978-1-62703-360-2_23

Herraiz T. Sample preparation and reversed phase-high performance liquid chromatography analysis of food-derived peptides. Anal Chim Acta. 1997;352:119–39. https://doi.org/10.1016/S0003-2670(97)00199-2

Article  CAS  Google Scholar 

Caldwell GW, Yan Z, Lang W, Masucci JA. The IC50 concept revisited. Curr Top Med Chem. 2012;12:1282–90. https://doi.org/10.2174/156802612800672844

Article  CAS  PubMed  Google Scholar 

Ngamsuk S, Huang T-C, Hsu J-L. ACE inhibitory activity and molecular docking of gac seed protein hydrolysate purified by HILIC and RP-HPLC. Molecules. 2020;25:4635 https://doi.org/10.3390/molecules25204635

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vecchi B, Añón MC. ACE inhibitory tetrapeptides from Amaranthus hypochondriacus 11S globulin. Phytochemistry. 2009;70:864–70. https://doi.org/10.1016/j.phytochem.2009.04.006

Article  CAS  PubMed  Google Scholar 

Pujiastuti DY, Shih Y-H, Chen W-L, Sukoso, Hsu J-L. Screening of angiotensin-I converting enzyme inhibitory peptides derived from soft-shelled turtle yolk using two orthogonal bioassay-guided fractionations. J Funct Foods. 2017;28:36–47. https://doi.org/10.1016/j.jff.2016.10.029

Article  CAS  Google Scholar 

Nong NTP, Sutopo CCY, Hung W-T, Wu P-H, Hsu J-L. The molecular docking and inhibition kinetics of Angiotensin I-Converting Enzyme inhibitory peptides derived from soft-shelled turtle yolk. Appl Sci. 2022;12:12340 https://doi.org/10.3390/app122312340

Article  CAS  Google Scholar 

Natesh R, Schwager SLU, Sturrock ED, Acharya KR. Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature. 2003;421:551–4. https://doi.org/10.1038/nature01370

Article  CAS  PubMed  Google Scholar 

Priyanto AD, Doerksen RJ, Chang C-I, Sung W-C, Widjanarko SB, Kusnadi J, et al. Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. J Proteom 2015;128:424–35. https://doi.org/10.1016/j.jprot.2015.08.018

Article  CAS  Google Scholar 

Aluko R. Bioactive Peptides. Functional Foods and Nutraceuticals. New York, NY: Springer New York; 2012. p. 37–61. https://doi.org/10.1007/978-1-4614-3480-1_3

Lee N-Y, Cheng J-T, Enomoto T, Nakano Y. One peptide derived from hen ovotransferrin as pro-drug to inhibit angiotensin converting enzyme. J Food Drug Anal. 2006;14:10 https://doi.org/10.38212/2224-6614.2505

Article  Google Scholar 

Sutopo CCY, Aznam N, Arianingrum R, Hsu J-L. Screening potential hypertensive peptides using two consecutive bioassay-guided SPE fractionations and identification of an ACE inhibitory peptide, DHSTAVW (DW7), derived from pearl garlic protein hydrolysate. Peptides. 2023;167:171046 https://doi.org/10.1016/j.peptides.2023.171046

Article  CAS  Google Scholar 

Sutopo CCY, Sutrisno A, Wang L-F, Hsu J-L. Identification of a potent Angiotensin-I converting enzyme inhibitory peptide from Black cumin seed hydrolysate using orthogonal bioassay-guided fractionations coupled with in silico screening. Process Biochem. 2020;95:204–13. https://doi.org/10.1016/j.procbio.2020.02.010

Article  CAS  Google Scholar 

Minkiewicz P, Iwaniak A, Darewicz M. BIOPEP-UWM database of bioactive peptides: current opportunities. Int J Mol Sci. 2019;20:5978 https://doi.org/10.3390/ijms20235978

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mooney C, Haslam NJ, Pollastri G, Shields DC. Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLOS ONE. 2012;7:e45012 https://doi.org/10.1371/journal.pone.0045012

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif