Highly efficient convolution computing architecture based on silicon photonic Fano resonance devices

PÉREZ D, GASULLA I, CRUDGINGTON L, et al. Multipurpose silicon photonics signal processor core[J]. Nature communications, 2017, 8(1): 636.

Article  ADS  Google Scholar 

LIU W, LI M, GUZZON R S, et al. A fully reconfigurable photonic integrated signal processor[J]. Nature photonics, 2016, 10(3): 190–195.

Article  ADS  Google Scholar 

HARRIS N C, BUNANDAR D, PANT M, et al. Large-scale quantum photonic circuits in silicon[J]. Nanophotonics, 2016, 5(3): 456–468.

Article  Google Scholar 

TAIT A N, DE LIMA T F, ZHOU E, et al. Neuromorphic photonic networks using silicon photonic weight banks[J]. Scientific reports, 2017, 7(1): 1–10.

Article  Google Scholar 

SHEN Y, HARRIS N C, SKIRLO S, et al. Deep learning with coherent nanophotonic circuits[J]. Nature photonics, 2017, 11(7): 441–446.

Article  ADS  Google Scholar 

SHAINLINE J M, BUCKLEY S M, MIRIN R P, et al. Superconducting optoelectronic circuits for neuromor-phic computing[J]. Physical review applied, 2017, 7(3): 034013.

Article  ADS  Google Scholar 

ZHANG H, GU M, JIANG X D, et al. An optical neural chip for implementing complex-valued neural network[J]. Nature communications, 2021, 12(1): 457.

Article  ADS  Google Scholar 

XU S, WANG J, YI S, et al. High-order tensor flow processing using integrated photonic circuits[J]. Nature communications, 2022, 13(1): 7970.

Article  ADS  Google Scholar 

MISCUGLIO M, SORGER V J. Photonic tensor cores for machine learning[J]. Applied physics reviews, 2020, 7(3): 031404.

Article  ADS  Google Scholar 

MEHRABIAN A, AL-KABANI Y, SORGER V J, et al. A photonic convolutional neural network accelerator[C]//2018 31st IEEE International System-on-Chip Conference (SOCC). New York: IEEE, 2018: 169–173.

Google Scholar 

ZHOU H, QIU C, JIANG X, et al. Compact, submilliwatt, 2×2 silicon thermo-optic switch based on photonic crystal nanobeam cavities[J]. Photonics research, 2017, 5(2): 108–112.

Article  Google Scholar 

LU L, ZHU L, ZENG Z, et al. Fano resonance ion sensor enabled by 2D plasmonic sub-nanopores-material[J]. IEEE sensors journal, 2021, 21(13): 14776–14783.

Article  ADS  Google Scholar 

XU Y, LU L, CHEN G, et al. T-shaped silicon waveguide coupled with a micro-ring resonator-based Fano resonance modulator[J]. Applied optics, 2022, 61(31): 9217–9224.

Article  ADS  Google Scholar 

TAO X, ZHANG D, WANG Z, et al. Detection of power line insulator defects using aerial images analyzed with convolutional neural networks[J]. IEEE transactions on systems, man, and cybernetics: systems, 2018, 50(4): 1486–1498.

Article  Google Scholar 

GU L, FANG L, FANG H, et al. Fano resonance lineshapes in a waveguide-microring structure enabled by an air-hole[J]. APL photonics, 2020, 5(1): 016108.

Article  ADS  Google Scholar 

ZHANG Y, ZOU J, HE J J. Temperature sensor with enhanced sensitivity based on silicon Mach-Zehnder interferometer with waveguide group index engineering[J]. Optics express, 2018, 26(20): 26057–26064.

Article  ADS  Google Scholar 

DING Z, LIU P, CHEN J, et al. On-chip simultaneous sensing of humidity and temperature with a dual-polarization silicon microring resonator[J]. Optics express, 2019, 27(20): 28649–28659.

Article  ADS  Google Scholar 

CHEN F, ZHANG H, SUN L, et al. Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide[J]. Optics & laser technology, 2019, 116: 293–299.

Article  ADS  Google Scholar 

XU Y, OU Z, CHEN J, et al. High sensitivity refractive index and temperature sensors with tunable multiple fano resonances[C]//2021 IEEE 6th Optoelectronics Global Conference (OGC), August 31–September 3, 2021, Shenzhen, China. New York: IEEE, 2021: 239–242.

Google Scholar 

ZHENG H, MA R, ZHU Z. A linear and wide dynamic range transimpedance amplifier with adaptive gain control technique[J]. Analog integrated circuits and signal processing, 2017, 90: 217–226.

Article  Google Scholar 

RAHIM A, SPUESENS T, BAETS R, et al. Open-access silicon photonics: current status and emerging initiatives[J]. Proceedings of the IEEE, 2018, 106(12): 2313–2330.

Article  Google Scholar 

NEDELJKOVIC M, SOREF R, MASHANOVICH G Z. Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14 µm infrared wavelength range[J]. IEEE photonics journal, 2011, 3(6): 1171–1180.

Article  ADS  Google Scholar 

VAN MIEGHEM P, MERTENS R P, VAN OVERSTRAETEN R J. Theory of the junction capacitance of an abrupt diode[J]. Journal of applied physics, 1990, 67(9): 4203–4211.

Article  ADS  Google Scholar 

Comments (0)

No login
gif