Ultra-large mode area multi-core orbital angular momentum transmission fiber designed by neural network and optimization algorithms

MA Q C, LUO A P, HONG W Y. Numerical study of photonic crystal fiber supporting 180 orbital angular momentum modes with high mode quality and flat dispersion[J]. Journal of lightwave technology, 2021, 39(9): 2971–2979.

Article  ADS  Google Scholar 

WANG Q B, ZHANG X D, LIU X J, et al. Orbital angular momentum modes (de)multiplexer without mode conversion based on strongly guiding coupled ring-core fibers[J]. Journal of lightwave technology, 2022, 40(19): 6523–6533.

Google Scholar 

FENG F, GAN J A, NONG J P, et al. Data transmission with up to 100 orbital angular momentum modes via commercial multi-mode fiber and parallel neural networks[J]. Optics express, 2022, 30(13): 23149–23162.

Article  ADS  Google Scholar 

TANDJÈ A, YAMMINE J, DOSSOU M, et al. Ring-core photonic crystal fiber for propagation of OAM modes[J]. Optics letters, 2019, 44(7): 1611–1614.

Article  ADS  Google Scholar 

QIN H B, HUANG W, SONG B B, et al. Hybrid method for inverse design of orbital angular momentum transmission fiber based on neural network and optimization algorithms[J]. Journal of lightwave technology, 2022, 40(17): 5974–5985.

Article  ADS  Google Scholar 

ZHAO W Q, WANG Y N, LI S A, et al. Non-zero dispersion-shifted ring fiber for the orbital angular momentum mode[J]. Optics express, 2021, 29(16): 25428–25438.

Article  ADS  Google Scholar 

BANAWAN M, WANG L X, LAROCHELLE S, et al. Quantifying the coupling and degeneracy of OAM modes in high-index-contrast ring core fiber[J]. Journal of lightwave technology, 2021, 39(2): 600–611.

Article  ADS  Google Scholar 

SHEVCHENKO N A, NALLAPERUMA S, SAVORY S J. Maximizing the information throughput of ultra-wideband fiber-optic communication systems[J]. Optics express, 2022, 30(11): 19320–19331.

Article  ADS  Google Scholar 

MOELLER L. Nonlinear depolarization of light in optical communication fiber[J]. APL photonics, 2020, 5(5): 050801.

Article  ADS  Google Scholar 

VANVINCQ O, CASSEZ A, HABERT R, et al. Large mode area solid-core photonic bandgap Yb-doped fiber with hetero-structured cladding for compact high-power laser systems[J]. Journal of lightwave technology, 2021, 39(14): 4809–4813.

Article  ADS  Google Scholar 

ANUSZKIEWICZ A, FRANCZYK M, PYSZ D, et al. Nanostructured large mode area fiber for laser applications[J]. Journal of lightwave technology, 2022, 40(12): 3947–3953.

Article  ADS  Google Scholar 

LI S H, WANG J. Supermode fiber for orbital angular momentum (OAM) transmission[J]. Optics express, 2015, 23(14): 18736–18745.

Article  ADS  Google Scholar 

JOLLIVET C, MAFI A, FLAMM D, et al. Mode-resolved gain analysis and lasing in multi-supermode multi-core fiber laser[J]. Optics express, 2014, 22(24): 30377–30386.

Article  ADS  Google Scholar 

XIA C, BAI N, OZDUR I, et al. Supermodes for optical transmission[J]. Optics express, 2011, 19(17): 16653–16664.

Article  ADS  Google Scholar 

YU C P, CHANG H C. Applications of the finite difference mode solution method to photonic crystal structures[J]. Optical and quantum electronics, 2004, 36(1): 145–163.

Article  Google Scholar 

CUCINOTTA A, SELLERI S, VINCETTI L, et al. Holey fiber analysis through the finite-element method[J]. IEEE photonics technology letters, 2002, 14(11): 1530–1532.

Article  ADS  Google Scholar 

NORTON R A, SCHEICHL N. Planewave expansion methods for photonic crystal fibers[J]. Applied numerical mathematics, 2013, 63: 88–104.

Article  MathSciNet  MATH  Google Scholar 

GENTY G, SALMELA L, DUDLEY J M, et al. Machine learning and applications in ultrafast photonics[J]. Nanophotonics, 2021, 15: 91–101.

Google Scholar 

SINGH R, AGARWAL A, ANTHONY B W. Mapping the design space of photonic topological states via deep learning[J]. Optics express, 2020, 28(19): 27893–27902.

Article  ADS  Google Scholar 

WIECHA P R, ARBOUET A, GIRARD C, et al. Deep learning in nano-photonics: inverse design and beyond[J]. Photonics research, 2021, 9(5): B182–B200.

Article  Google Scholar 

CHANG J H, CORSI A, RUSCH L A, et al. Design analysis of OAM fibers using particle swarm optimization algorithm[J]. Journal of lightwave technology, 2020, 38(4): 846–856.

Article  ADS  Google Scholar 

CHEN Y, GAO M, SONG X. Method to design the common aperture multi-band optical system based on the PSO algorithm[J]. Optics express, 2021, 29(12): 18325–18335.

Article  ADS  Google Scholar 

MOLESKY S, LIN Z, PIGGOTT A Y, et al. Inverse design in nanophotonics[J]. Nature photonics, 2018, 12: 659–670.

Article  ADS  Google Scholar 

留言 (0)

沒有登入
gif