Bifurcated convolutional network for specular highlight removal

SHI J, DONG Y, SU H, et al. Learning non-Lambertian object intrinsics across ShapeNet categories[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, July 21–26, 2017, Honolulu, HI, USA. New York: IEEE, 2017: 1063–6919.

Google Scholar 

WEI X, XU X B, ZHANG J W, et al. Specular highlight reduction with known surface geometry[J]. Computer vision and image understanding, 2018, 168: 132–144.

Article  Google Scholar 

YANG Q X, TANG J H, AHUJA N. Efficient and robust specular highlight removal[J]. IEEE transaction on pattern analysis and machine intelligence, 2014, 37(6): 1304–1311.

Article  Google Scholar 

WEI X, XU X B, ZHANG J W, et al. Specular highlight reduction with known surface geometry[J]. Computer vision and image understanding, 2018, 168: 132–144.

Article  Google Scholar 

LI R Y, PAN J J, SI Y Q, et al. Specular refmections removal for endoscopic image sequences with adaptive-RPCA decomposition[J]. IEEE transactions on medical imaging, 2020, 39(2): 328–340.

Article  Google Scholar 

WU Z Q, ZHUANG C Q, SHI J, et al. Single-image specular highlight removal via real-world dataset construction[C]//Proceedings of the IEEE Transactions on Multimedia, August 27, 2021. New York: IEEE, 2021: 3782–3793.

Google Scholar 

WANG X C, TAO C N, TAO X, et al. SIHRNet: a fully convolutional network for single image highlight removal with a real-world dataset[J]. Journal of electronic imaging, 2022, 31: 033013.

ADS  Google Scholar 

FU G, ZHANG Q, ZHU L, et al. A multi-task network for joint specular highlight detection and removal[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 20–25, 2021, Nashville, TN, USA. New York: IEEE, 2021: 7748–7757.

Google Scholar 

XU J T, LIU S, CHEN G Z, et al. Highlight detection and removal method based on bifurcated-CNN[C]//Proceedings of the EI Conference on Intelligent Robotics and Applications, August 10, 2022, Harbin, China. New York: EI, 2022: 307–318.

Google Scholar 

WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, August 22–25, 2018, Munich, Germany. Berlin, Heidelberg: Springer-Verlag, 2018: 3–19.

Google Scholar 

ZHANG X, NG R, CHEN Q. Single image reflection separation with perceptual losses[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, July 18–22, 2018, Salt Lake City, UT, USA. New York: IEEE, 2018: 4786–4794.

Google Scholar 

WEI K, YANG J, FU Y, et al. Single image reflection removal exploiting misaligned training data and network enhancements[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, July 16–20, 2019, Long Beach, CA, USA. New York: IEEE, 2019: 8178–8187.

Google Scholar 

LIN J, EL AMINE SEDDIK M, TAMAAZOUSTI M, et al. Deep multi-class adversarial specularity removal[C]//Proceedings of the 21st Scandinavian Conference on Image Analysis, June 11–13, 2019, Norrköping, Sweden. Berlin, Heidelberg: Springer-Verlag, 2019: 11482.

Google Scholar 

FUNKE I, SEBASTIAN B, CARINA R, et al. Generative adversarial networks for specular highlight removal in endoscopic images[C[//Proceedings of the SPIE, March, 2018, Houston, Texas, USA. Washington: SPIE, 2018: 10576(9).

Google Scholar 

YAMAMOTO T, KITAJIMA T, KAWAUCHI R. Efficient improvement method for separation of reflection components based on an energy function[C]//Proceedings of the IEEE International Conference on Image Processing, September 17–20, 2017, Beijing, China. Beijing: IEEE, 2017: 4222–4226.

Google Scholar 

FAN D P, ZHAI Y G, ALI B, et al. BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[C]//Proceedings of the European Conference on Computer Vision, October 23–27, 2020, Tel Aviv, Israel. Berlin, Heidelberg: Springer-Verlag, 2020: 275–292.

Google Scholar 

Comments (0)

No login
gif