ZHAO X, GONG P, QIAO G, et al. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method[J]. Sensors, 2011, 11: 10798–10819.
HU W, DING L, ZHU C, et al. Optical fiber polarizer with Fe-C film for corrosion monitoring[J]. IEEE sensors journal, 2017, 17: 6904–6910.
GUO C, FAN L, WU C, et al. Ultrasensitive LPFG corrosion sensor with Fe-C coating electroplated on a Gr/AgNW film[J]. Sensors and actuators B: chemical, 2019, 283: 334–342.
LAO J, SUN P, LIU F, et al. In situ plasmonic optical fiber detection of the state of charge of supercapacitors for renewable energy storage[J]. Light-science & applications, 2018, 7: 34.
WANG Y, SONG Y, XIA Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical society reviews, 2016, 45: 5925–5950.
ZHU C, GERALD R E, HUANG J. Ultra-sensitive microwave-photonic optical fiber interferometry based on phase-shift amplification[J]. IEEE journal of selected topics in quantum electronics, 2021, 27: 1–8.
BAO Y, HUANG Y, HOEHLER M S, et al. Review of fiber optic sensors for structural fire engineering[J]. Sensors (Basel), 2019, 19.
CHEN A H J, STRZODA R, FLEISCHER M, et al. Low-level and ultralow-volume hollow waveguide based carbon monoxide sensor[J]. Optics letters, 2010, 35.
TONG Z, WANG X, WANG Y, et al. Dual-parameter optical fiber sensor based on few-mode fiber and spherical structure[J]. Optics communications, 2017, 405: 60–65.
CHEN Y, TANG F, TANG Y, et al. Mechanism and sensitivity of Fe-C coated long period fiber grating sensors for steel corrosion monitoring of RC structures[J]. Corrosion science, 2017, 127: 70–81.
HOSHI Y, KOIKE T, TOKIEDA H, et al. Non-contact measurement to detect steel rebar corrosion in reinforced concrete by electrochemical impedance spectroscopy[J]. Journal of the electrochemical society, 2019, 166: 3316–3319.
LUO D, LI Y, LU T, et al. Tapered polymer optical fiber sensors for monitoring the steel bar corrosion[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 1–9.
BARILLARO G, MERLO S, SURDO S, et al. Optical quality-assessment of high-order one-dimensional silicon photonic crystals with a reflectivity notch at λ∼ 1.55 µm[J]. IEEE photonics journal, 2010, 2: 981–990.
CARPIGNANO F, SURDO S, BARILLARO G, et al. Silicon micromachined device testing by infrared low-coherence reflectometry[J]. Journal of microelectromechanical systems, 2015, 2: 1960–1964.
NIEDZIALKOWSKI P, BIAŁOBRZESKA W, BURNAT D, et al. Electrochemical performance of indium-tin-oxide-coated lossy-mode resonance optical fiber sensor[J]. Sensors and actuators B: chemical, 2019, 301.
JANCZUK-RICHTER M, PIESTRZYŃSKA M, BURNAT D, et al. Optical investigations of electrochemical processes using a long-period fiber grating functionalized by indium tin oxide[J]. Sensors and actuators B: chemical, 2019, 279: 223–229.
LIU X, STOLIAROV S I, DENLINGER M, et al. Comprehensive calorimetry of the thermallyinduced failure of a lithium ion battery[J]. Journal of power sources, 2015, 280: 516–525.
XU L, ZHANG D, HUANG Y, et al. Monitoring epoxy coated steel under combined mechanical loads and corrosion using fiber Bragg grating sensors[J]. Sensors (Basel), 2022, 22.
LOPEZ-HIGUERA J M, RODRIGUEZ C L, QUINTELA I A, et al. Fiber optic sensors in structural health monitoring[J]. Journal of lightwave technology, 2011, 29: 587–608.
HUANG S, HU X, ZHANG H, et al. A high-precision system of fiber Bragg grating temperature sensing demodulation based on light power detection[J]. Optoelectronics letters, 2022, 18: 461–467.
FAN X, JIANG J, ZHANG X, et al. Investigation on temperature characteristics of weak fiber Bragg gratings in a wide range[J]. Chinese optics letters, 2019, 17(12): 14–18.
TIAN Z, YAM S S H, LOOCK H P. Single-mode fiber refractive index sensor based on core-offset attenuators[J]. IEEE photonics technology letters, 2008, 20: 1387–1389.
CHEN J, ZHOU J, ZHANG Q, et al. All-fiber modal interferometer based on a joint-taper-joint fiber structure for refractive index sensing with high sensitivity[J]. IEEE sensors journal, 2013, 13: 2780–2785.
HU X, ZHANG H, WANG Y, et al. Magnetic-ionic-liquid-integrated microfiber Mach-Zehnder interferometer for simultaneous measurement of magnetic field and temperature[J]. Optical fiber technology, 2021, 67.
YI D, LIU F, GENG Y, et al. High-sensitivity and large-range fiber optic temperature sensor based on PDMS-coated Mach-Zehnder interferometer combined with FBG[J]. Optics express, 2021, 29: 18624–18633.
GONG T, LIU X, WANG Z, et al. A highly sensitivity humidity sensor based on mismatching fused fiber Mach-Zehnder interferometric without moisture material coating[J]. Journal of optics, 2020, 22(2): 025801.
Comments (0)