Electrochromism and photoelectrochemical performance of WO3/Au composite film electrodes

CLAES G, GRANQVIS T. Electrochromics for smart windows: oxide-based thin films and devices[J]. Thin solid films: an international journal on the science and technology of thin and thick films, 2014, 564: 1–38.

Article  Google Scholar 

SONG Y L, ZHANG Q Y, YAO A H. Template-free electrodeposition and electrochromic performance of porous WO3·2H2O thin film[J]. Chinese journal of inorganic chemistry, 2023, 39(01): 127–134.

ADS  Google Scholar 

WANG M, FANG G, YUAN L, et al. High optical switching speed and flexible electrochromic display based on WO3 nanoparticles with ZnO nanorod arrays supported electrode[J]. Nanotechnology, 2009, 20(18): 185304.

Article  ADS  Google Scholar 

WANG Y Q, NIE L H, WU N, et al. Preparation of WO3 nanoarray by hydrothermal method and its application in perovskite solar cells[J]. Journal of the Chinese ceramic society, 2018, 46(05): 649–656.

Google Scholar 

KERAN W, LUO L, WANG C, et al. Photocatalytic methane activation by dual reaction sites commodified WO3[J]. Chinese journal of catalysis, 2023, 46(03): 103–112.

Google Scholar 

WEN R T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films[J]. Nature materials, 2015, 14: 996–1001.

Article  ADS  Google Scholar 

WEN R T, ARVIZU M A, MORALES-LUNA M, et al. Ion trapping and detrapping in amorphous tungsten oxide thin films observed by real-time electro-optical monitoring[J]. Chemistry of materials, 2016, 28: 4670–4676.

Article  Google Scholar 

YA J, YUE X P, ZHANG A M. Preparation of pseudo-single crystal WO3 nanosheets and their photocatalytic performance[J]. China environmental science, 2021, 41(04): 1615–1623.

Google Scholar 

KARUPPASAMY K M, SUBRAHMANYAM A. The electrochromic and photocatalytic properties of electron beam evaporated vanadium-doped tungsten oxide thin films[J]. Solar energy materials and solar cells, 2008, 92(11): 1322–1326.

Article  Google Scholar 

RAHMANZADE K A, NIKFARJAM A, AMERI M, et al. Improving electrochromic properties of WO3 thin film with Au nanoparticle additive[J]. International journal of engineering, 2015, 28(8): 1169–1174.

Google Scholar 

PARK K W. Electrochromic properties of Au-WO3 nanocomposite thin-film electrode[J]. Electrochimica acta, 2005, 50(24): 4690–4693.

Article  Google Scholar 

NASERI N, AZIMIRAD R, AKHAVAN O, et al. Improving the electrochromic properties of sol-gel WO3 films by doping Au nanocrystals[J]. Thin solid films, 2010, 518(8): 2250–2257.

Article  ADS  Google Scholar 

PENNINGTON A M, PITMAN C L, DESARIO P A, et al. Photocatalytic CO oxidation over nanoparticulate Au-modified TiO2 aerogels: the importance of size andintimacy[J]. ACS catalysis, 2020, 10(24): 14834–14846.

Article  Google Scholar 

WANG Z L, LAI L W, WANG Y C, et al. Preparation and enhanced photoelectrocatalytic properties of a three-dimensional TiO2 Au porous structure fabricated using super aligned carbon nanotube films[J]. International journal of hydrogen energy, 2020, 45(56): 31963–31975.

Article  Google Scholar 

NG K H, MINGGU L J, JAAFAR N A, et al. Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3 photoanodes[J]. Solar energy materials and solar cells, 2017, 172: 361–367.

Article  Google Scholar 

XU F, YAO Y, BAI D, et al. A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array[J]. Journal of colloid and interface science, 2015, 458: 194–199.

Article  ADS  Google Scholar 

ZOU J W, LI Z D, KANG H S. Strong visible light absorption and abundant hotspots in Au-decorated WO3 nanobricks for efficient SERS and photocatalysis[J]. ACS omega, 2021, 6(42): 28347–28355.

Article  Google Scholar 

FAUZI A S A, HAMIDAH N L, KITAMURA S, et al. Electrochemical detection of ethanol in air using graphene oxide nanosheets combined with Au-WO3[J]. Sensors (Basel), 2022, 22(9): 3194.

Article  ADS  Google Scholar 

ZHOU T, WANG D B, ZHAO L, et al. Preparation of bacterial cellulose/Au film loaded with tungsten trioxide and its catalytic performance[J]. Journal of textile research, 2023, 44(04): 16–23.

Google Scholar 

DU J, YANG M D, WU Y L, et al. The effects of solvent and microwave on the preparation of magnesium oxide precursor[J]. Crystal research & technology, 2015, 49(12): 959–964.

Article  Google Scholar 

YAN C, MA Q, JIA H, et al. Hydrothermal synthesis of ZnS microspheres with highly effective photocatalytic and antibacterial properties[J]. Journal of materials science: materials in electronics, 2016, 27(10): 10237–10243.

Google Scholar 

OZDAL T, TAKTAKOGLU R, OZDAMAR H, et al. Crystallinity improvement of ZnO nanorods by optimization of low-cost electrodeposition technique[J]. Thin solid films, 2015, 592(OCT.1PT.A): 143–149.

Article  ADS  Google Scholar 

SUN M, ZANGARI G, SHAMSUZZOHA M, et al. Electrodeposition of highly uniform magnetic nanoparticle arrays in ordered alumite[J]. Applied physics letters, 2001, 78(19): 2964–2966.

Article  ADS  Google Scholar 

TAO F F, GUAN M Y, JIANG Y, et al. An easy way to construct an ordered array of nickel nanotubes: the triblock-copolymer-assisted hard-template method[J]. Advanced materials, 2010, 18(16): 2161–2164.

Article  Google Scholar 

MINGGU L J, JAAFAR N A, NG K H, et al. Electrodeposited WO3/Au photoanodes for photoelectrochemical reactions[J]. Sains malaysiana, 2020, 49(12): 3209–3217.

Article  Google Scholar 

WANG J, JIANG L, LIU F, et al. Enhanced photoelectrochemical degradation of tetracycline hydrochloride with FeOOH and Au nanoparticles decorated WO3[J]. Chemical engineering journal, 2021, 407: 127195.

Article  Google Scholar 

ZHANG B, WANG H, YE H. Reversible redox mechanism based synthesis of plasmonic WO3/Au photocatalyst for selective and sensitive detection of ultra-micro Hg2+[J]. Sensors and actuators B: chemical, 2018, 273: 1435–1441.

Article  Google Scholar 

PATIL P S, MUJAWAR S H, INAMDAR A I, et al. Electrochromic properties of spray deposited TiO2 doped WO3 thin films[J]. Applied surface science, 2005, 250(1–4): 117–123.

Article  ADS  Google Scholar 

YAN C, KANG W, WANG J. Stretchable and wearable electrochromic devices[J]. ACS nano, 2014, 8(1): 316–322.

Article  Google Scholar 

ADHIKARI S, SWAIN R, SARKAR D, et al. Wedge-like WO3 architectures for efficient electrochromism and photoelectrocatalytic activity towards water pollutants[J]. Molecular catalysis, 2017, 432: 76–87.

Article  Google Scholar 

KARUPPASAMY A. Electrochromism and photocatalysis in dendrite structured Ti: WO3 thin films grown by sputtering[J]. Applied surface science, 2015, 359(DEC.30): 841–846.

Article  ADS  Google Scholar 

ZHANG G G, LU K K, ZHANG X C, et al. Effects of annealing temperature on optical band gap of sol-gel tungsten trioxide films[J]. Micromachines, 2018, 9: 3771–3779.

Article  Google Scholar 

MA B, YU N, XIN S, et al. Photoelectrocatalytic degradation of p-chloronitrobenzene by g-C3N4/TiO2 nanotube arrays photoelectrodes under visible light irradiation[J]. Chemosphere, 2021, 267: 129242.

Article  ADS  Google Scholar 

留言 (0)

沒有登入
gif