Binding of small molecule inhibitors to RNA polymerase-Spt5 complex impacts RNA and DNA stability

Hantsche M, Cramer P (2016) The structural basis of transcription: 10 years after the Nobel Prize in chemistry. Angew Chem Int Edit 55:15972–15981

Article  CAS  Google Scholar 

Osman S, Cramer P (2020) Structural biology of RNA polymerase II transcription: 20 years on. Annu Rev Cell Dev Bi 36:1–34

Article  CAS  Google Scholar 

Kwak H, Lis JT (2013) Control of Transcriptional Elongation. Annu Rev Genet 47:483–508

Article  CAS  PubMed  PubMed Central  Google Scholar 

Decker TM (2021) Mechanisms of transcription elongation factor DSIF (Spt4-Spt5). J Mol Biol 433:166657

Article  CAS  PubMed  Google Scholar 

Li J, Gilmour DS (2011) Promoter proximal pausing and the control of gene expression. Curr Opin Genet Dev 21:231–235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vos SM, Farnung L, Urlaub H, Cramer P (2018) Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560:601–606

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehara H, Yokoyama T, Shigematsu H, Yokoyama S, Shirouzu M, Sekine S (2017) Structure of the complete elongation complex of RNA polymerase II with basal factors. Science 357:921–924

Article  CAS  PubMed  Google Scholar 

Fitz J, Neumann T, Pavri R (2018) Regulation of RNA polymerase II processivity by Spt5 is restricted to a narrow window during elongation. Embo J 37:e97965

Article  PubMed  PubMed Central  Google Scholar 

Crickard JB, Lee J, Lee TH, Reese JC (2017) The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome. Nucleic Acids Res 45:6362–6374

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ehara H, Kujirai T, Fujino Y, Shirouzu M, Kurumizaka H, Sekine S (2019) Structural insight into nucleosome transcription by RNA polymerase II with elongation factors. Science 363:744–747

Article  CAS  PubMed  Google Scholar 

Kujirai T, Kurumizaka H (2020) Transcription through the nucleosome. Curr Opin Struc Biol 61:42–49

Article  CAS  Google Scholar 

Cheng HM, Chern Y, Chen IH, Liu CR, Li SH, Chun SJ, Rigo F, Bennett CF, Deng N, Feng YA et al (2015) Effects on murine behavior and lifespan of selectively decreasing expression of mutant huntingtin allele by Supt4h knockdown. Plos Genet 11:e1005043

Article  PubMed  PubMed Central  Google Scholar 

Furuta N, Tsukagoshi S, Hirayanagi K, Ikeda Y (2019) Suppression of the yeast elongation factor Spt4 ortholog reduces expanded SCA36 GGCCUG repeat aggregation and cytotoxicity. Brain Res 1711:29–40

Article  CAS  PubMed  Google Scholar 

Kramer NJ, Carlomagno Y, Zhang YJ, Almeida S, Cook CN, Gendron TF, Prudencio M, Van Blitterswijk M, Belzil V, Couthouis J et al (2016) Spt4 selectively regulates the expression of C9orf72 sense and antisense mutant transcripts. Science 353:708–712

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu CR, Chang CR, Chern Y, Wang TH, Hsieh WC, Shen WC, Chang CY, Chu IC, Deng N, Cohen SN et al (2012) Spt4 is selectively required for transcription of extended trinucleotide repeats. Cell 148:690–701

Article  CAS  PubMed  Google Scholar 

Bernecky C, Plitzko JM, Cramer P (2017) Structure of a transcribing RNA polymerase II-DSIF complex reveals a multidentate DNA-RNA clamp. Nat Struct Mol Biol 24:809–815

Article  CAS  PubMed  Google Scholar 

Ehara H, Kujirai T, Shirouzu M, Kurumizaka H, Sekine SI (2022) Structural basis of nucleosome disassembly and reassembly by RNAPII elongation complex with FACT. Science 377:eabp9466

Article  CAS  PubMed  Google Scholar 

Farnung L, Ochmann M, Garg G, Vos SM, Cramer P (2022) Structure of a backtracked hexasomal intermediate of nucleosome transcription. Mol Cell 82:1–9

Article  Google Scholar 

Farnung L, Vos SM, Cramer P (2018) Structure of transcribing RNA polymerase II-nucleosome complex. Nat Commun 9:5432

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filipovski M, Soffers JHM, Vos SM, Farnung L (2022) Structural basis of nucleosome retention during transcription elongation. Science 376:1313–1316

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vos SM, Farnung L, Boehning M, Wigge C, Linden A, Urlaub H, Cramer P (2018) Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 560:607–612

Article  CAS  PubMed  Google Scholar 

Vos SM, Farnung L, Linden A, Urlaub H, Cramer P (2020) Structure of complete Pol II-DSIF-PAF-SPT6 transcription complex reveals RTF1 allosteric activation. Nat Struct Mol Biol 27:668–677

Article  CAS  PubMed  Google Scholar 

Aoi Y, Takahashi YH, Shah AP, Iwanaszko M, Rendleman EJ, Khan NH, Cho BK, Goo YA, Ganesan S, Kelleher NL et al (2021) SPT5 stabilization of promoter-proximal RNA polymerase II. Mol Cell 81:4413–4424

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baejen C, Andreani J, Torkler P, Battaglia S, Schwalb B, Lidschreiber M, Maier KC, Boltendahl A, Rus P, Esslinger S et al (2017) Genome-wide analysis of RNA polymerase II termination at protein-coding genes. Mol Cell 66:38–49

Article  CAS  PubMed  Google Scholar 

Crickard JB, Fu JH, Reese JC (2016) Biochemical analysis of yeast suppressor of ty 4/5 (Spt4/5) reveals the importance of nucleic acid interactions in the Prevention of RNA polymerase II arrest. J Biol Chem 291:9853–9870

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evrin C, Serra-Cardona A, Duan SF, Mukherjee PP, Zhang ZG, Labib KPM (2022) Spt5 histone binding activity preserves chromatin during transcription by RNA polymerase II. Embo J 41:e109783

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fitz J, Neumann T, Steininger M, Wiedemann EM, Garcia AC, Athanasiadis A, Schoeberl UE, Pavri R (2020) Spt5-mediated enhancer transcription directly couples enhancer activation with physical promoter interaction. Nat Genet 52:505–515

Article  CAS  PubMed  Google Scholar 

Hu SB, Peng LN, Xu CL, Wang ZN, Song A, Chen FX (2021) SPT5 stabilizes RNA polymerase II, orchestrates transcription cycles, and maintains the enhancer landscape. Mol Cell 81:4425–4439

Article  CAS  PubMed  Google Scholar 

Li WT, Giles C, Li SS (2014) Insights into how Spt5 functions in transcription elongation and repressing transcription coupled DNA repair. Nucleic Acids Res 42:7069–7083

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shetty A, Kallgren SP, Demel C, Maier KC, Spatt D, Alver BH, Cramer P, Park PJ, Winston F (2017) Spt5 plays vital roles in the control of sense and Antisense Transcription Elongation. Mol Cell 66:77–88

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallardo A, Bogart BM, Dutagaci B (2022) Protein-nucleic acid interactions for RNA polymerase II elongation factors by Molecular Dynamics simulations. J Chem Inf Model 62:3079–3089

Article  CAS  PubMed  Google Scholar 

Ashley CT, Warren ST (1995) Trinucleotide repeat expansion and human Disease. Annu Rev Genet 29:703–728

Article  CAS  PubMed  Google Scholar 

Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, Habu T, Liu WY, Okuda H, Koizumi A (2011) Expansion of Intronic GGCCTG Hexanucleotide repeat in NOP56 causes SCA36, a type of Spinocerebellar Ataxia accompanied by Motor Neuron involvement. Am J Hum Genet 89:121–130

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J et al (2011) Expanded GGGGCC hexanucleotide repeat in Noncoding Region of C9ORF72 causes chromosome 9p-Linked FTD and ALS. Neuron 72:245–256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L et al (2011) A Hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-Linked ALS-FTD. Neuron 72:257–268

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif