Zhou SF, Zhong WZ (2017) Drug design and discovery: principles and applications. Molecules 22:279
Article PubMed PubMed Central Google Scholar
Chung TDY, Terry DB, Smith LH (2004) In vitro and in vivo assessment of ADME and PK properties during lead selection and lead optimization—guidelines, benchmarks and rules of thumb. In: Markossian S, Grossman A, Brimacombe K, Arkin M, Auld D, Austin C, Baell J, Chung TDY, Coussens NP, Dahlin JL, Devanarayan V, Foley TL, Glicksman M, Haas JV, Hall MD, Hoare S, Inglese J, Iversen PW, Kales SC, Lal-Nag M, Li Z, McGee J, McManus O, Riss T, Saradjian P, Sittampalam GS, Tarselli M, Trask OJ Jr, Wang Y, Weidner JR, Wildey MJ, Wilson K, Xia M, Xu X (eds) Assay guidance manual. Bethesda, MD
Göller AH, Kuhnke L, Montanari F, Bonin A, Schneckener S, ter Laak A, Wichard J, Lobell M, Hillisch A (2020) Bayer’s in silico ADMET platform: a journey of machine learning over the past two decades. Drug Discov Today 25:1702–1709
Göller AH, Kuhnke L, ter Laak A, Meier K, Hillisch A (2022) Machine learning applied to the modeling of pharmacological and ADMETAbsorption, distribution, metabolism, excretion and toxicity (ADMET) endpoints. In: Heifetz A (ed) Artificial intelligence in drug design. Springer, New York, pp 61–101
Lucas AJ, Sproston JL, Barton P, Riley RJ (2019) Estimating human ADME properties, pharmacokinetic parameters and likely clinical dose in drug discovery. Expert Opin Drug Discov 14:1313–1327
Article CAS PubMed Google Scholar
Eleftheriadou D, Luette S, Kneuer C (2019) In silico prediction of dermal absorption of pesticides—an evaluation of selected models against results from in vitro testing. SAR QSAR Environ Res 30:561–585
Article CAS PubMed Google Scholar
Elliott JR, Compton RG (2022) Modeling transcuticular uptake from particle-based formulations of lipophilic products. ACS Agric Sci Technol 2:603–614
Article CAS PubMed PubMed Central Google Scholar
Hayet, M., Fernandez, V. (2012) Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions. Theor Biol Med Model 9:45
Xiao S, Gong Y, Li Z, Fantke P (2021) Improving pesticide uptake modeling into potatoes: considering tuber growth dynamics. J Agric Food Chem 69:3607–3616
Article CAS PubMed Google Scholar
Avdeef A, Fuguet E, Llinàs A, Ràfols C, Bosch E, Völgyi G, Verbić T, Boldyreva E, Takács-Novák K (2016) Equilibrium solubility measurement of ionizable drugs–consensus recommendations for improving data quality. ADMET DMPK 4:117–178
Fink C, Sun DJ, Wagner K, Schneider M, Bauer H, Dolgos H, Mader K, Peters SA (2020) Evaluating the role of solubility in oral absorption of poorly water-soluble drugs using physiologically-based pharmacokinetic modeling. Clin Pharmacol Ther 107:650–661
Article CAS PubMed Google Scholar
Llinas A, Avdeef A (2019) Solubility challenge revisited after ten years, with multilab shake-flask data, using tight (SD ∼ 0.17 log) and Loose (SD ∼ 0.62 log) Test Sets. J Chem Inf Model 59:3036–3040
Article CAS PubMed Google Scholar
Ono A, Matsumura N, Kimoto T, Akiyama Y, Funaki S, Tamura N, Hayashi S, Kojima Y, Fushimi M, Sudaki H, Aihara R, Haruna Y, Jiko M, Iwasaki M, Fujita T, Sugano K (2019) Harmonizing solubility measurement to lower inter-laboratory variance—progress of consortium of biopharmaceutical tools (CoBiTo) in Japan. ADMET DMPK 7:183–195
Article PubMed PubMed Central Google Scholar
Bergstroem CAS, Luthman K, Artursson P (2004) Accuracy of calculated pH-dependent Aqueous Drug Solubility. Eur J Pharm Sci 22:387–398
Loh ZH, Samanta AK, Heng PWS (2015) Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Assian J Pharm Sci 10:255–274. https://doi.org/10.1016/j.ajps.2014.12.006
Fredenslund Aa (1989) UNIFAC and related group-contribution models for phase equilibria. Fluid Phase Equilib 52:135–150
Bustamante P, Escalera B, Martin A, Selles E (1993) A modification of the extended Hildebrand approach to predict the solubility of structurally related drugs in solvent mixtures. J Pharm Pharmacol 45:253–257
Article CAS PubMed Google Scholar
Lin HM, Nash RA (1993) An experimental method for determining the Hildebrand solubility parameter of organic nonelectrolytes. J Pharm Sci 82:1018–1026
Article CAS PubMed Google Scholar
Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press
Delaney JS (2005) Predicting aqueous solubility from structure. Drug Discov Today 10:289–295
Article CAS PubMed Google Scholar
Balakin KV, Savchuk NP, Tetko IV (2006) In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: trends, problems and solutions. Curr Med Chem 13:223–241
Article CAS PubMed Google Scholar
Faller B, Ertl P (2007) Computational approaches to determine drug solubility Adv. Drug Delivery Rev 59:533–545
Göller AH, Hennemann M, Keldenich J, Clark T (2006) In silico prediction of buffer solubility based on quantum-mechanical and HQSAR- and topology-based descriptors. J Chem Inf Model 46:648–658. https://doi.org/10.1021/ci0503210
Article CAS PubMed Google Scholar
Schwaighofer A, Schroeter T, Mika S, Laub J, ter Laak A, Sülzle D, Ganzer U, Heinrich N, MÃ (2007) Accurate solubility prediction with error bars for electrolytes: a machine learning approach. J Chem Inf Model 47:407–424. https://doi.org/10.1021/ci600205g
Article CAS PubMed Google Scholar
Schroeter T, Schwaighofer A, Mika S, ter Laak A, Sülzle D, Ganzer U, Heinrich N, Müller K-R (2007) Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules. J Comput Aided Mol Des 21:651–664. https://doi.org/10.1007/s10822-007-9160-9
Article CAS PubMed Google Scholar
Montanari F, Kuhnke L, ter Laak A, Clever D-A (2020) Modeling physico-chemical ADMET endpoints with multitask graph convolutional networks. Molecules 25:44–56. https://doi.org/10.3390/molecules25010044
Bonin A, Montanari F, Niederführ S et al (2023) pH-dependent solubility prediction for optimized drug absorption and compound uptake by plants. J Comput Aided Mol Des 37:129–145
Article CAS PubMed Google Scholar
Gheta SKO, Bonin A, Gerlach T, Göller AH (2023) Predicting absolute aqueous solubility by applying a machine learning model for an artificially liquid-state as proxy for the solid-state. J Comput Aided Mol Des 37:765–789. https://doi.org/10.1007/s10822-023-00538-w
Article CAS PubMed Google Scholar
Klingspohn W, Mathea M, Ter Laak A, Heinrich N, Baumann K (2017) Efficiency of different measures for defining the applicability domain of classification models. J Chem 9(1):44
Khanna V, Anwar J, Frenkel D, Doherty MF, Peters B (2021) Free energies of crystals computed using Einstein crystal with fixed center of mass and differing spring constants. J Chem Phys 154(164509):164509. https://doi.org/10.1063/5.0044833
Article CAS PubMed Google Scholar
Palmer DS, McDonagh JL, Mitchell JBO, van Mourik T, Fedorov MV (2012) First-principles calculation of the intrinsic aqueous solubility of crystalline druglike molecules. J Chem Theory Comput 8:3322–3337
Article CAS PubMed Google Scholar
Aguilar B, Onufriev AV (2012) Efficient computation of the total solvation energy of small molecules via the r6 generalized born model. J Chem Theory Comput 8:2404–2411
Article CAS PubMed Google Scholar
Chebil L, Chipot C, Archambault F, Humeau C, Engasser JM, Ghoul M, Dehez F (2010) Solubilities Inferred from the combination of experiment and simulation. Case study of quercetin in a variety of solvents. J Phys Chem B 114:12308–12313
Comments (0)