Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucl Acids Res 43(18):8627–8637. https://doi.org/10.1093/nar/gkv862
Article CAS PubMed PubMed Central Google Scholar
Wu Y, Zan L-P, Wang X-D, Lu Y-J, Ou T-M, Lin J, Huang Z-S, Gu L-Q (2014) Stabilization of vegf g-quadruplex and inhibition of angiogenesis by quindoline derivatives. Biochim et Biophys Acta (BBA) - Gen Subj 1840(9):2970–2977. https://doi.org/10.1016/j.bbagen.2014.06.002
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235
Article CAS PubMed PubMed Central Google Scholar
Helen, B., Kim, H., Haruki, N.: Announcing the worldwide protein data bank. Nature Structural and Molecular Biology (2003) https://doi.org/10.1038/nsb1203-980
Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Christie CH, Dalenberg K, Di Costanzo L, Duarte JM, Dutta S, Feng Z, Ganesan S, Goodsell DS, Ghosh S, Green RK, Guranović V, Guzenko D, Hudson BP, Lawson CL, Liang Y, Lowe R, Namkoong H, Peisach E, Persikova I, Randle C, Rose A, Rose Y, Sali A, Segura J, Sekharan M, Shao C, Tao Y-P, Voigt M, Westbrook JD, Young JY, Zardecki C, Zhuravleva M (2020) Rcsb protein data bank: powerful new tools for exploring 3d structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucl Acids Res 49(D1):437–451. https://doi.org/10.1093/nar/gkaa1038
Elena, B., Brahim, H., Blaˇz, B., N., R.S., Tuˆan, P.A.: Major g-quadruplex form of hiv-1 ltr reveals a (3 + 1) folding topology containing a stem-loop. Journal of the American Chemical Society 140(42), 13654–13662 (2018) https://doi.org/10. 1021/jacs.8b05332
Article CAS PubMed PubMed Central Google Scholar
Caruso P, Sanches K, Da Poian AT, Pinheiro AS, Almeida FCL (2021) Dynamics of the sars-cov-2 nucleoprotein n-terminal domain triggers rna duplex destabilization. Biophys J 120(14):2814–2827. https://doi.org/10.1016/j.bpj.2021.06.003
Article CAS PubMed PubMed Central Google Scholar
Cogoi S, Xodo LE (2006) G-quadruplex formation within the promoter of the kras proto-oncogene and its effect on transcription. Nucl Acids Res 34(9):2536–2549. https://doi.org/10.1093/nar/gkl286
Article CAS PubMed PubMed Central Google Scholar
Kosiol, N., Juranek, S., Brossart, P.: G-quadruplexes: a promising target for cancer therapy. Mol Cancer (2021) https://doi.org/10.1186/s12943-021-01328-4
Article PubMed PubMed Central Google Scholar
Scholz O, Hansen S, Plückthun A (2014) G-quadruplexes are specifically recognized and distinguished by selected designed ankyrin repeat proteins. Nucl Acids Res 42(14):9182–9194. https://doi.org/10.1093/nar/gku571
Article CAS PubMed PubMed Central Google Scholar
Takahama K, Miyawaki A, Shitara T, Mitsuya K, Morikawa M, Hagihara M, Kino K, Yamamoto A, Oyoshi T (2015) G-quadruplex dna- and rna-specific-binding proteins engineered from the rgg domain of tls/fus. ACS Chem Biol 10(11):2564–2569. https://doi.org/10.1021/acschembio.5b00566
Article CAS PubMed Google Scholar
Colasanti, A.V., Lu, X.-J., Olson, W.K.: Analyzing and building nucleic acid structures with 3dna. JoVE (2013) https://doi.org/10.3791/4401
Lu X, Olson WK (2003) 3dna: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucl Acids Res 31(17):5108–5121. https://doi.org/10.1093/nar/gkg680
Article CAS PubMed PubMed Central Google Scholar
Lu WK, Olson Xiang-Jun (2008) 3dna: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat Protocols. https://doi.org/10.1038/nprot.2008.104
Miskiewicz J, Sarzynska J, Szachniuk M (2020) How bioinformatics resources work with g4 rnas. Brief Bioinform 22(3):201. https://doi.org/10.1093/bib/bbaa201
Zheng G, Lu X-J, Olson WK (2009) Web 3DNA: a web server for the analysis, reconstruction, and visualization of three dimensional nucleic acid structures. Nucl Acids Res. https://doi.org/10.1093/nar/gkp358
Article PubMed PubMed Central Google Scholar
Popenda M, Miskiewicz J, Sarzynska J, Zok T, Szachniuk M (2019) Topology based classification of tetrads and quadruplex structures. Bioinform 36(4):1129–1134. https://doi.org/10.1093/bioinformatics/btz738
Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[ag3(t2ag3)3] g-tetraplex. Structure 1(4):263–282. https://doi.org/10.1016/0969-2126(93)90015-9
Article CAS PubMed Google Scholar
Matsugami A, Okuizumi T, Uesugi S, Katahira M (2003) Intramolecular higher order packing of parallel quadruplexes comprising a g:g:g:g tetrad and a g(:a):g(:a):g(:a):g heptad of gga triplet repeat dna*. J Biol Chem 278(30):28147–28153. https://doi.org/10.1074/jbc.M303694200
Article CAS PubMed Google Scholar
Wang Y, Patel DJ (1995) Solution structure of theoxytrichatelomeric repeat d[g4(t4g4)3] g-tetraplex. J Mol Biol 251(1):76–94. https://doi.org/10.1006/jmbi.1995.0417
Article CAS PubMed Google Scholar
Fernandez-Millan, P., Autour, A., Ennifar, E., Westhof, E., Ryckelynck, M.: Crystal structure and fluorescence properties of the ispinach aptamer in complex with dfhbi. rna. JoVE (2017). https://doi.org/10.1261/rna.063008.117
Kuryavyi, V., Patel, D.J.: Monomeric intronic human chl1 gene quadruplex dna nmr, 17 structures. PDB (2009). https://doi.org/10.1016/j.str.2009.10.015
Zurkowski M, Zok T, Szachniuk M (2022) DrawTetrado to create layer diagrams of G4 structures. Bioinformatics 38(15):3835–3836. https://doi.org/10.1093/bioinformatics/btac394
Article CAS PubMed PubMed Central Google Scholar
Adamczyk B, Zurkowski M, Szachniuk M, Zok T (2023) WebTetrado: a webserver to explore quadruplexes in nucleic acid 3D structures. Nucl Acids Res 51(W1):607–612. https://doi.org/10.1093/nar/gkad346
Comments (0)