Biomimetic Inspired Hydrogels for Regenerative Vertebral Body Stenting

Foundation IO. IOF: a fracture every 3 seconds worldwide - that's osteoporosis 2019 [Available from: https://www.prnewswire.com/news-releases/iof-a-fracture-every-3-seconds-worldwide---thats-osteoporosis-300934719.html. Accessed June 2023.

Sözen T, Özışık L, Başaran N. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56.

Article  PubMed  Google Scholar 

Chandra RV, Maingard J, Asadi H, Slater LA, Mazwi TL, Marcia S, et al. Vertebroplasty and kyphoplasty for osteoporotic vertebral fractures: what are the latest data? AJNR Am J Neuroradiol. 2018;39(5):798–806.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rotter R, Martin H, Fuerderer S, Gabl M, Roeder C, Heini P, et al. Vertebral body stenting: a new method for vertebral augmentation versus kyphoplasty. Eur Spine J. 2010;19(6):916–23.

Article  PubMed  PubMed Central  Google Scholar 

Vanni D, Galzio R, Kazakova A, Pantalone A, Grillea G, Bartolo M, et al. Third-generation percutaneous vertebral augmentation systems. J Spine Surg (Hong Kong). 2016;2(1):13–20.

Article  Google Scholar 

Gong Y, Zhang B, Yan L. A preliminary review of modified polymethyl methacrylate and calcium-based bone cement for improving properties in osteoporotic vertebral compression fractures. Front. Mater. 2022;9. https://doi.org/10.3389/fmats.2022.912713.

Wang Q, Dong JF, Fang X, Chen Y. Application and modification of bone cement in vertebroplasty: a literature review. Jt Dis Relat Surg. 2022;33(2):467–78.

Article  PubMed  PubMed Central  Google Scholar 

Excellence NIfHaC. Percutaneous vertebroplasty and percutaneous balloon kyphoplasty for treating osteoporotic vertebral compression fractures National Institute for Health and Clinical Excellence2013 [Available from: https://www.nice.org.uk/guidance/ta279/resources/percutaneous-vertebroplasty-and-percutaneous-balloon-kyphoplasty-for-treating-osteoporotic-vertebral-compression-fractures-pdf-82600620856261. Accessed June 2023.

Technology Evaluation Center BCaBSA. Percutaneous vertebroplasty or kyphoplasty for vertebral fractures caused by osteoporosis. Technical Evaluation Center Assessment Programme Executive Summary; 2011. Available from: https://www.cms.gov/medicare-coverage-database/view/technology-assessments.

Arkin VH, Narendrakumar U, Madhyastha H, Manjubala I. Characterization and in vitro evaluations of injectable calcium phosphate cement doped with magnesium and strontium. ACS Omega. 2021;6(4):2477–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23(1):4.

Article  PubMed  PubMed Central  Google Scholar 

Ho TC, Chang CC, Chan HP, Chung TW, Shu CW, Chuang KP, et al. Hydrogels: properties and applications in biomedicine. Molecules (Basel, Switzerland). 2022;27(9).

Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang X-Q. Bioactive hydrogels for bone regeneration. Bioact Mater. 2018;3(4):401–17.

PubMed  PubMed Central  Google Scholar 

Tozzi G, De Mori A, Oliveira A, Roldo M. Composite hydrogels for bone regeneration. Materials (Basel) 2016;9(4):267.

Neffe AT, Pierce BF, Tronci G, Ma N, Pittermann E, Gebauer T, et al. One step creation of multifunctional 3D architectured hydrogels inducing bone regeneration. Adv Mater 2015;27(10):1738–44.

Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1(12):16071.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buwalda SJ, Vermonden T, Hennink WE. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules. 2017;18(2):316-30.

Sivaraj D, Chen K, Chattopadhyay A, Henn D, Wu W, Noishiki C, et al. Hydrogel scaffolds to deliver cell therapies for wound healing. Front Bioeng Biotechnol. 2021;9:660145.

Wang Y, Zhang W, Gong C, Liu B, Li Y, Wang L, et al. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. Soft Matter. 020;16(44):10029–45.

Van Tomme SR, Storm G, Hennink WE. In situ gelling hydrogels for pharmaceutical and biomedical applications. Int J Pharm. 2008;355(1):1–18.

Article  PubMed  Google Scholar 

Alavi SE, Panah N, Page F, Gholami M, Dastfal A, Sharma LA, et al. Hydrogel-based therapeutic coatings for dental implants. Eur Polym J. 2022;181: 111652.

Article  CAS  Google Scholar 

Guo F, Huang K, Niu J, Kuang T, Zheng Y, Gu Z, et al. Enhanced osseointegration of double network hydrogels via calcium polyphosphate incorporation for bone regeneration. Int J Biol Macromol. 2020;151:1126–32.

Article  CAS  PubMed  Google Scholar 

Rho J-Y, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys. 1998;20(2):92–102.

Article  CAS  PubMed  Google Scholar 

Andronescu E, Voicu G, Ficai M, Mohora IA, Trusca R, Ficai A. Collagen/hydroxyapatite composite materials with desired ceramic properties. J Electron Microsc. 2011;60(3):253–9.

Article  CAS  Google Scholar 

Gleeson JP, Plunkett NA, O’Brien FJ. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur Cell Mater. 2010;20:218–30.

Article  CAS  PubMed  Google Scholar 

Calabrese G, Giuffrida R, Fabbi C, Figallo E, Lo Furno D, Gulino R, et al. Collagen-hydroxyapatite scaffolds induce human adipose derived stem cells osteogenic differentiation in vitro. PLoS ONE. 2016;11(3): e0151181.

Article  PubMed  PubMed Central  Google Scholar 

Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials. 2001;22(13):1705–11.

Article  CAS  PubMed  Google Scholar 

Murphy CM, Schindeler A, Gleeson JP, Yu NY, Cantrill LC, Mikulec K, et al. A collagen-hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates. Acta Biomater. 2014;10(5):2250–8.

Article  CAS  PubMed  Google Scholar 

Fu S, Ni P, Wang B, Chu B, Zheng L, Luo F, et al. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials. 2012;33(19):4801–9.

Article  CAS  PubMed  Google Scholar 

Dhivya S, Saravanan S, Sastry TP, Selvamurugan N. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnol. 2015;13(1):40.

Article  CAS  Google Scholar 

Chen L, Wu C, Chen S, Zhang Y, Liu A, Ding J, et al. Biomimetic mineralizable collagen hydrogels for dynamic bone matrix formation to promote osteogenesis. J Mater Chem B. 2020;8(15):3064–75.

Article  CAS  PubMed  Google Scholar 

•• Li Y, Xiao L, Wei D, Liu S, Zhang Z, Lian R, et al. Injectable biomimetic hydrogel guided functional bone regeneration by adapting material degradation to tissue healing. 2023;33(19):2213047. This study provides an advanced strategy to develop a biomimetic hydrogel with bone like composition and bone regeneration-adapted degradability, to facilitate functional bone regeneration.

Liu L, Yang B, Wang L-Q, Huang J-P, Chen W-Y, Ban Q, et al. Biomimetic bone tissue engineering hydrogel scaffolds constructed using ordered CNTs and HA induce the proliferation and differentiation of BMSCs. J Mater Chem B. 2020;8(3):558–67.

Article  CAS  PubMed  Google Scholar 

Kirkbride KC, Townsend TA, Bruinsma MW, Barnett JV, Blobe GC. Bone morphogenetic proteins signal through the transforming growth factor-beta type III receptor. J Biol Chem. 2008;283(12):7628–37.

Article  CAS  PubMed  Google Scholar 

Katagiri T, Watabe T. Bone morphogenetic proteins. Cold Spring Harb Perspect Biol. 2016;8(6):a021899.

James AW, LaChaud G, Shen J, Asatrian G, Nguyen V, Zhang X, et al. A review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev. 2016;22(4):284–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8(55):153–70.

Yi M-H, Lee J-E, Kim C-B, Lee K-W, Lee K-H. Locally controlled diffusive release of bone morphogenetic protein-2 using micropatterned gelatin methacrylate hydrogel carriers. BioChip J. 2020;14(4):405–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shan B-H, Wu F-G. Hydrogel-based growth factor delivery platforms: strategies and recent advances. Adv Mater. 2023. https://doi.org/10.1002/adma.202210707.

Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017;9(10):e435-e.

Carrêlo H, Soares PIP, Borges JP, Cidade MT. Injectable composite systems based on microparticles in hydrogels for bioactive cargo controlled delivery. Gels (Basel, Switzerland). 2021;7(3):147.

• Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nature reviews Materials. 2020;5(1):20-43. A comprehensive review on hydrogel microparticles compared to bulk hydrogels and their application for therapeutic delivery.

Chung YI, Ahn KM, Jeon SH, Lee SY, Lee JH, Tae G. Enhanced bone regeneration with BMP-2 loaded functional nanoparticle-hydrogel complex. J Control Release. 2007;121(1–2):91–9.

Article  CAS  PubMed  Google Scholar 

Fathi-Achachelouei M, Keskin D, Bat E, Vrana NE, Tezcaner A. Dual growth factor delivery using PLGA nanoparticles in silk fibroin/PEGDMA hydrogels for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2020;108(5):2041–62.

Article  CAS  PubMed  Google Scholar 

Park Y, Lin S, Bai Y, Moeinzadeh S, Kim S, Huang J, et al. Dual delivery of BMP2 and IGF1 through injectable hydrogel promotes cranial bone defect healing. Tissue Eng Part A. 2022;28(17–18):760–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lienemann PS, Lutolf MP, Ehrbar M. Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1078–89.

Article  CAS  PubMed  Google Scholar 

Schoonraad SA, Trombold ML, Bryant SJ. The Effects of Stably Tethered BMP-2 on MC3T3-E1 Preosteoblasts Encapsulated in a PEG Hydrogel. Biomacromol. 2021;22(3):1065–79.

Article  CAS  Google Scholar 

Gultian KA, Gandhi R, DeCesari K, Romiyo V, Kleinbart EP, Martin K, et al. Injectable hydrogel with immobilized BMP-2 mimetic peptide for local bone regeneration. Front Biomater Sci. 2022;1:948493.

Bhakta G, Rai B, Lim ZXH, Hui JH, Stein GS, van Wijnen AJ, et al. Hyaluronic acid-based hydrogels functionalized with heparin that support controlled release of bioactive BMP-2. Biomaterials. 2012;33(26):6113–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hettiaratchi MH, Krishnan L, Rouse T, Chou C, McDevitt TC, Guldberg RE. Heparin-mediated delivery of bone morphogenetic protein-2 improves spatial localization of bone regeneration. Sci Adv. 2020;6(1):eaay1240.

Kaneko H, Arakawa T, Mano H, Kaneda T, Ogasawara A, Nakagawa M, et al. Direct stimulation of oste

留言 (0)

沒有登入
gif