Three-membered ring formation catalyzed by α-ketoglutarate-dependent nonheme iron enzymes

Thibodeaux CJ, Chang W-c, Liu H-w (2012) Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Chem Rev 112:1681–1709

Article  CAS  PubMed  Google Scholar 

Falagas ME, Vouloumanou EK, Samonis G, Vardakas KZ (2016) Fosfomycin. Clin Microbiol Rev 29:321–347

Article  CAS  PubMed  PubMed Central  Google Scholar 

Michalopoulos AS, Livaditis IG, Gougoutas V (2011) The revival of fosfomycin. Int J Infect Dis 15:e732–e739

Article  CAS  PubMed  Google Scholar 

Silver LL (2017) Fosfomycin: mechanism and resistance. Cold Spring Harb Perspec Med 7:a025262

Article  Google Scholar 

Crooke ST, Bradner WT (1976) Mitomycin C: a review. Cancer Treat Rev 3:121–139

Article  CAS  PubMed  Google Scholar 

Tomasz M (1995) Mitomycin C: small, fast and deadly (but very selective). Chem Biol 2:575–579

Article  CAS  PubMed  Google Scholar 

Suresh Kumar G, Lipman R, Cummings J, Tomasz M (1997) Mitomycin C−DNA adducts generated by DT-diaphorase. Revised mechanism of the enzymatic reductive activation of mitomycin C. Biochemistry 36:14128–14136

Article  CAS  PubMed  Google Scholar 

Talele TT (2016) The “cyclopropyl fragment” is a versatile player that frequently appears in preclinical/clinical drug molecules. J Med Chem 59:8712–8756

Article  CAS  PubMed  Google Scholar 

Ma S, Mandalapu D, Wang S, Zhang Q (2022) Biosynthesis of cyclopropane in natural products. Nat Prod Rep 39:926–945

Article  CAS  PubMed  Google Scholar 

Wessjohann LA, Brandt W, Thiemann T (2003) Biosynthesis and metabolism of cyclopropane rings in natural compounds. Chem Rev 103:1625–1648

Article  CAS  PubMed  Google Scholar 

Kelly WL, Boyne MT, Yeh E, Vosburg DA, Galonić DP, Kelleher NL, Walsh CT (2007) Characterization of the aminocarboxycyclopropane-forming enzyme CmaC. Biochemistry 46:359–368

Article  CAS  PubMed  Google Scholar 

Kurosawa S, Hasebe F, Okamura H, Yoshida A, Matsuda K, Sone Y, Tomita T, Shinada T, Takikawa H, Kuzuyama T, Kosono S, Nishiyama M (2022) Molecular basis for enzymatic aziridine formation via sulfate elimination. J Am Chem Soc 144:16164–16170

Article  CAS  PubMed  Google Scholar 

Zha L, Jiang Y, Henke MT, Wilson MR, Wang JX, Kelleher NL, Balskus EP (2017) Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring. Nat Chem Biol 13:1063–1065

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guengerich FP (2003) Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions. Arch Biochem Biophys 409:59–71

Article  PubMed  Google Scholar 

Savage TJ, Croteau R (1993) Biosynthesis of monoterpenes: regio-and stereochemistry of (+)-3-carene biosynthesis. Arch Biochem Biophys 305:581–587

Article  CAS  PubMed  Google Scholar 

Hoelscher DJ, Williams DC, Wildung MR, Croteau R (2003) A cDNA clone for 3-carene synthase from Salvia stenophylla. Phytochemistry 62:1081–1086

Article  CAS  Google Scholar 

Fäldt J, Martin D, Miller B, Rawat S, Bohlmann J (2003) Traumatic resin defense in Norway spruce (Picea abies): Methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol Biol 51:119–133

Article  PubMed  Google Scholar 

Ushimaru R, Abe I (2022) Unusual dioxygen-dependent reactions catalyzed by nonheme iron enzymes in natural product biosynthesis. ACS Catal 13:1045–1076

Article  Google Scholar 

Martinez S, Hausinger RP (2015) Catalytic mechanisms of Fe(II)- and 2-oxoglutarate-dependent oxygenases. J Biol Chem 290:20702–20711

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krebs C, Galonić Fujimori D, Walsh CT, Bollinger JM Jr (2007) Non-heme Fe(IV)–oxo intermediates. Acc Chem Res 40:484–492

Article  CAS  PubMed  Google Scholar 

Wu L-F, Meng S, Tang G-L (2016) Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products. Biochim Biophys Acta Proteins Proteom 1864:453–470

Article  CAS  Google Scholar 

Nakamura H, Matsuda Y, Abe I (2018) Unique chemistry of non-heme iron enzymes in fungal biosynthetic pathways. Nat Prod Rep 35:633–645

Article  CAS  PubMed  Google Scholar 

Gao S-S, Naowarojna N, Cheng R, Liu X, Liu P (2018) Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Nat Prod Rep 35:792–837

Article  CAS  PubMed  PubMed Central  Google Scholar 

Klinkenberg I, Blokland A (2010) The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev 34:1307–1350

Article  CAS  PubMed  Google Scholar 

Renner UD, Oertel R, Kirch W (2005) Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit 27:655–665

Article  CAS  PubMed  Google Scholar 

Kohnen-Johannsen KL, Kayser O (2019) Tropane alkaloids: chemistry, pharmacology, biosynthesis and production. Molecules 24:796

Article  PubMed  PubMed Central  Google Scholar 

Huang J-P, Wang Y-J, Tian T, Wang L, Yan Y, Huang S-X (2021) Tropane alkaloid biosynthesis: a centennial review. Nat Prod Rep 38:1634–1658

Article  CAS  PubMed  Google Scholar 

Fodor G, Romeike A, Janzso G, Koczor I (1959) Epoxidation experiments in vivo with dehydrohyoscyamine and related compounds. Tetrahedron Lett 1:19–23

Article  Google Scholar 

Hashimoto T, Yamada Y (1986) Hyoscyamine 6β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, in alkaloid-producing root cultures. Plant Physiol 81:619–625

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashimoto T, Yamada Y (1987) Purification and characterization of hyoscyamine 6β-hydroxylase from root cultures of Hyoscyamus niger L. Hydroxylase and epoxidase activities in the enzyme preparation. Euro J Biochem 164:277–285

Article  CAS  Google Scholar 

Hashimoto T, Kohno J, Yamada Y (1987) Epoxidation in vivo of hyoscyamine to scopolamine does not involve a dehydration step. Plant physiol 84:144–147

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashimoto T, Kohno J, Yamada Y (1989) 6β-Hydroxyhyoscyamine epoxidase from cultured roots of Hyoscyamus niger. Phytochemistry 28:1077–1082

Article  CAS  Google Scholar 

Matsuda J, Okabe S, Hashimoto T, Yamada Y (1991) Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 266:9460–9464

Article  CAS  PubMed  Google Scholar 

Hashimoto T, Matsuda J, Yamada Y (1993) Two-step epoxidation of hyoscyamine to scopolamine is catalyzed by bifunctional hyoscyamine 6β-hydroxylase. FEBS lett 329:35–39

Article  CAS  PubMed  Google Scholar 

Li J, van Belkum MJ, Vederas JC (2012) Functional characterization of recombinant hyoscyamine 6β-hydroxylase from Atropa belladonna. Bioorg Med Chem 20:4356–4363

Article  CAS  PubMed  Google Scholar 

Ushimaru R, Ruszczycky MW, Chang W-c, Yan F, Liu Y-n, Liu H-w (2018) Substrate conformation correlates with the outcome of hyoscyamine 6β-hydroxylase catalyzed oxidation reactions. J Am Chem Soc 140:7433–7436

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ushimaru R, Ruszczycky MW, Liu H-w (2018) Changes in regioselectivity of H atom abstraction during the hydroxylation and cyclization reactions catalyzed by hyoscyamine 6β-hydroxylase. J Am Chem Soc 141:1062–1066

Article  PubMed  PubMed Central  Google Scholar 

Kluza A, Wojdyla Z, Mrugala B, Kurpiewska K, Porebski PJ, Niedzialkowska E, Minor W, Weiss MS, Borowski T (2020) Regioselectivity of hyoscyamine 6β-hydroxylase-catalysed hydroxylation as revealed by high-resolution structural information and QM/MM calculations. Dalton Trans 49:4454–4469

Article  CAS  PubMed Central 

留言 (0)

沒有登入
gif