BRWD1 orchestrates small pre-B cell chromatin topology by converting static to dynamic cohesin

Clark, M. R., Mandal, M., Ochiai, K. & Singh, H. Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat. Rev. Immunol. 14, 69–80 (2014).

Article  CAS  PubMed  Google Scholar 

Mandal, M. et al. BRWD1 orchestrates epigenetic landscape of late B lymphopoiesis. Nat. Commun. 9, 3888–3902 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Mandal, M. et al. Epigenetic repression of the Igk locus by STAT5-mediated recruitment of the histone methyltransferase Ezh2. Nat. Immunol. 12, 1212–1220 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu, R., Medina, K. L., Lancki, D. W. & Singh, H. IRF-4,8 orchestrate the pre-B-to-B transition in lymphocyte development. Genes Dev. 17, 1703–1708 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandal, M. et al. Histone reader BRWD1 targets and restricts recombination to the Igk locus. Nat. Immunol. 16, 1094–1103 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fulton, S. L. et al. Rescue of deficits by Brwd1 copy number restoration in the Ts65Dn mouse model of Down syndrome. Nat. Commun. 13, 6384 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandal, M. et al. CXCR4 signaling directs Igk recombination and the molecular mechanisms of late B lymphopoiesis. Nat. Immunol. 20, 1393–1403 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wright, N. E., Mandal, M. & Clark, M. R. Molecular mechanisms insulating proliferation from genotoxic stress in B lymphocytes. Trends Immunol. 44, 668–677 (2023).

Article  CAS  PubMed  Google Scholar 

Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teng, G. et al. RAG represents a widespread threat to the lymphocyte genome. Cell 162, 751–765 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stadhouders, R. et al. Pre-B cell receptor signaling induces immunoglobulin κ locus accessibility by functional redistribution of enhancer-mediated chromatin interactions. PLoS Biol. 12, e1001791 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Zhang, Y. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forcato, M. et al. Comparison of computational methods for Hi-C data analysis. Nat. Methods 14, 679–685 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bozek, M. & Gompel, N. Developmental transcriptional enhancers: a subtle interplay between accessibility and activity. Bioessays 42, e1900188 (2020).

Article  PubMed  Google Scholar 

Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

Article  CAS  PubMed  Google Scholar 

Pott, S. & Lieb, J. D. What are super-enhancers? Nat. Genet. 47, 8–12 (2015).

Article  CAS  PubMed  Google Scholar 

Seo, W. & Taniuchi, I. The roles of RUNX family proteins in development of immune cells. Mol. Cells 43, 107–113 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Miller, C. H. et al. Eomes identifies thymic precursors of self-specific memory-phenotype CD8+ T cells. Nat. Immunol. 21, 567–577 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gounari, F. & Khazaie, K. TCF-1: a maverick in T cell development and function. Nat. Immunol. 23, 671–678 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Merkenschlager, M. & Nora, E. P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu Rev. Genomics Hum. Genet. 17, 17–43 (2016).

Article  CAS  PubMed  Google Scholar 

Zhang, Y. et al. The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature 573, 600–604 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hill, L. et al. Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion. Nature 584, 142–147 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178.e1120 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai, H. Q. et al. Loop extrusion mediates physiological Igh locus contraction for RAG scanning. Nature 590, 338–343 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banigan, E. J. & Mirny, L. A. Loop extrusion: theory meets single-molecule experiments. Curr. Opin. Cell Biol. 64, 124–138 (2020).

Article  CAS  PubMed  Google Scholar 

Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).

Article  CAS  PubMed  Google Scholar 

Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707.e614 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, N. Q. et al. WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation. Nat. Genet. 53, 100–109 (2021).

Article  CAS  PubMed  Google Scholar 

Nora, E. P. et al. Molecular basis of CTCF binding polarity in genome folding. Nat. Commun. 11, 5612 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson, I. F. & Peters, J. M. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22, 445–464 (2021).

Article  CAS  PubMed  Google Scholar 

Karki, S. et al. Regulated capture of Vκ gene topologically associating domains by transcription factories. Cell Rep. 24, 2443–2456 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoon, S., Chandra, A. & Vahedi, G. Stripenn detects architectural stripes from chromatin conformation data using computer vision. Nat. Commun. 13, 1602 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kraft, K. et al. Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations. Nat. Cell Biol. 21, 305–310 (2019).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif