Effects of MAP4K inhibition on neurite outgrowth

Ronan JL, Wu W, Crabtree GR. From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet. 2013;14(5):347–59. https://doi.org/10.1038/nrg3413.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20(4):327–48.

Article  PubMed  PubMed Central  Google Scholar 

Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Dev Biol. 1996;274(5290):1123–33.

CAS  Google Scholar 

Leprince P, Bonvoisin C, Rogister B, Mazy-Servais C, Moonen G. Protein kinase- and staurosporine-dependent induction of neurite outgrowth and plasminogen activator activity in PC12 cells. Biochem Pharmacol. 1996;52(9):1399–405.

Article  PubMed  CAS  Google Scholar 

Johnson SA, Hunter T. Kinomics: methods for deciphering the kinome. Nat Methods. 2005;2(1):17–25.

Article  PubMed  CAS  Google Scholar 

Iroegbu JD, Ijomone OK, Femi-Akinlosotu OM, Ijomone OM. ERK/MAPK signalling in the developing brain: perturbations and consequences. Neurosci Biobehav Rev. 2021;131:792–805. https://doi.org/10.1016/j.neubiorev.2021.10.009.

Article  PubMed  CAS  Google Scholar 

Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta Mol Cell Res. 2011;1813(9):1619–33. https://doi.org/10.1016/j.bbamcr.2010.12.012.

Article  CAS  Google Scholar 

Chuang HC, Wang X, Tan TH. MAP4K Family Kinases in Immunity and Inflammation (Internet). 1st ed. Vol. 129, Advances in Immunology. Elsevier Inc.; 2016. 277–314 p. https://doi.org/10.1016/bs.ai.2015.09.006.

Seo G, Han H, Vargas RE, Yang B, Li X, Wang W. MAP4K interactome reveals STRN4 as a key STRIPAK complex component in hippo pathway regulation. Cell Rep. 2020;32(1):107860.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Singh SK, Roy R, Kumar S, Srivastava P, Jha S, Rana B, et al. Molecular insights of MAP4K4 signaling in inflammatory and malignant diseases. Cancers (Basel). 2023;15(8):2272.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fu CA, Shen M, Huang BCB, Lasaga J, Payan DG, Luo Y. TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton. J Biol Chem. 1999;274(43):30729–37. https://doi.org/10.1074/jbc.274.43.30729.

Article  PubMed  CAS  Google Scholar 

Jovanovic D, Yan S, Baumgartner M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front Oncol. 2022;12:1–18.

Article  Google Scholar 

Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Péer I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009;460(7256):753–7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD, et al. A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull. 2009;35(1):96–108.

Article  PubMed  Google Scholar 

Wang Q, Charych EI, Pulito VL, Lee JB, Graziane NM, Crozier RA, et al. The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Mol Psychiatry. 2011;16(10):1006–23.

Article  PubMed  CAS  Google Scholar 

Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry. 2012;17(9):887–905.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cesana M, Vaccaro L, Larsen MJ, Kibæk M, Micale L, Riccardo S, et al. Integrated exome and transcriptome analysis prioritizes MAP4K4 de novo frameshift variants in autism spectrum disorder as a novel disease–gene association. Hum Genet. 2023;142(3):343–50. https://doi.org/10.1007/s00439-022-02497-y.

Article  PubMed  CAS  Google Scholar 

Eisfeldt J, Schuy J, Stattin EL, Kvarnung M, Falk A, Feuk L, et al. Multi-omic investigations of a 17–19 translocation links MINK1 disruption to autism, epilepsy and osteoporosis. Int J Mol Sci. 2022;23(16):9392.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Larhammar M, Huntwork-Rodriguez S, Rudhard Y, Sengupta-Ghosh A, Lewcock JW. The Ste20 family kinases MAP4K4, MINK1, and TNIK converge to regulate stress-induced JNK signaling in neurons. J Neurosci. 2017;37(46):11074–84.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kawasaki A, Okada M, Tamada A, Okuda S, Nozumi M, Ito Y, et al. Growth cone phosphoproteomics reveals that GAP-43 phosphorylated by JNK is a marker of axon growth and regeneration. iScience. 2018;4:190–203. https://doi.org/10.1016/j.isci.2018.05.019.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Roth Flach RJ, Skoura A, Matevossian A, Danai L V., Zheng W, Cortes C, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6.

Ammirati M, Bagley SW, Bhattacharya SK, Buckbinder L, Carlo AA, Conrad R, et al. Discovery of an in vivo tool to establish proof-of-concept for MAP4K4-based antidiabetic treatment. ACS Med Chem Lett. 2015;6(11):1128–33.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Egawa J, Arta RK, Lemmon VP, Muños-Barrero M, Shi Y, Igarashi M, et al. The cyclin G-associated kinase (GAK) inhibitor SGC-GAK-1 inhibits neurite outgrowth and synapse formation. Mol Brain. 2022;15(1):1–5.

Article  Google Scholar 

Coba MP, Komiyama NH, Nithianantharajah J, Kopanitsa MV, Indersmitten T, Skene NG, et al. TNiK is required for postsynaptic and nuclear signaling pathways and cognitive function. J Neurosci. 2012;32(40):13987–99.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Südhof TC. The cell biology of synapse formation. J Cell Biol. 2021;220(7):1–18.

Article  Google Scholar 

Coffey ET. Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci. 2014;15(5):285–99. https://doi.org/10.1038/nrn3729.

Article  PubMed  CAS  Google Scholar 

Arta RK, Watanabe Y, Inoue E, Nawa Y, Morikawa R, Egawa J, et al. Resequencing and association analysis of GAP43 with autism spectrum disorder and schizophrenia in a Japanese population. Res Autism Spectr Disord. 2021;82:101729. https://doi.org/10.1016/j.rasd.2021.101729.

Article  Google Scholar 

Holahan MR, Honegger KS, Routtenberg A. Ectopic growth of hippocampal mossy fibers in a mutated GAP-43 transgenic mouse with impaired spatial memory retention. Hippocampus. 2010;20(1):58–64.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Igarashi M, Kawasaki A, Ishikawa Y, Honda A, Okada M, Okuda S. Phosphoproteomic and bioinformatic methods for analyzing signaling in vertebrate axon growth and regeneration. J Neurosci Methods. 2020;339:108723. https://doi.org/10.1016/j.jneumeth.2020.108723.

Article  PubMed  CAS  Google Scholar 

留言 (0)

沒有登入
gif