Ronan JL, Wu W, Crabtree GR. From neural development to cognition: unexpected roles for chromatin. Nat Rev Genet. 2013;14(5):347–59. https://doi.org/10.1038/nrg3413.
Article PubMed PubMed Central CAS Google Scholar
Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20(4):327–48.
Article PubMed PubMed Central Google Scholar
Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Dev Biol. 1996;274(5290):1123–33.
Leprince P, Bonvoisin C, Rogister B, Mazy-Servais C, Moonen G. Protein kinase- and staurosporine-dependent induction of neurite outgrowth and plasminogen activator activity in PC12 cells. Biochem Pharmacol. 1996;52(9):1399–405.
Article PubMed CAS Google Scholar
Johnson SA, Hunter T. Kinomics: methods for deciphering the kinome. Nat Methods. 2005;2(1):17–25.
Article PubMed CAS Google Scholar
Iroegbu JD, Ijomone OK, Femi-Akinlosotu OM, Ijomone OM. ERK/MAPK signalling in the developing brain: perturbations and consequences. Neurosci Biobehav Rev. 2021;131:792–805. https://doi.org/10.1016/j.neubiorev.2021.10.009.
Article PubMed CAS Google Scholar
Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta Mol Cell Res. 2011;1813(9):1619–33. https://doi.org/10.1016/j.bbamcr.2010.12.012.
Chuang HC, Wang X, Tan TH. MAP4K Family Kinases in Immunity and Inflammation (Internet). 1st ed. Vol. 129, Advances in Immunology. Elsevier Inc.; 2016. 277–314 p. https://doi.org/10.1016/bs.ai.2015.09.006.
Seo G, Han H, Vargas RE, Yang B, Li X, Wang W. MAP4K interactome reveals STRN4 as a key STRIPAK complex component in hippo pathway regulation. Cell Rep. 2020;32(1):107860.
Article PubMed PubMed Central CAS Google Scholar
Singh SK, Roy R, Kumar S, Srivastava P, Jha S, Rana B, et al. Molecular insights of MAP4K4 signaling in inflammatory and malignant diseases. Cancers (Basel). 2023;15(8):2272.
Article PubMed PubMed Central CAS Google Scholar
Fu CA, Shen M, Huang BCB, Lasaga J, Payan DG, Luo Y. TNIK, a novel member of the germinal center kinase family that activates the c-Jun N-terminal kinase pathway and regulates the cytoskeleton. J Biol Chem. 1999;274(43):30729–37. https://doi.org/10.1074/jbc.274.43.30729.
Article PubMed CAS Google Scholar
Jovanovic D, Yan S, Baumgartner M. The molecular basis of the dichotomous functionality of MAP4K4 in proliferation and cell motility control in cancer. Front Oncol. 2022;12:1–18.
Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Péer I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009;460(7256):753–7.
Article PubMed PubMed Central CAS Google Scholar
Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, Nguyen DD, et al. A genome-wide association study of schizophrenia using brain activation as a quantitative phenotype. Schizophr Bull. 2009;35(1):96–108.
Wang Q, Charych EI, Pulito VL, Lee JB, Graziane NM, Crozier RA, et al. The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Mol Psychiatry. 2011;16(10):1006–23.
Article PubMed CAS Google Scholar
Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry. 2012;17(9):887–905.
Article PubMed PubMed Central CAS Google Scholar
Cesana M, Vaccaro L, Larsen MJ, Kibæk M, Micale L, Riccardo S, et al. Integrated exome and transcriptome analysis prioritizes MAP4K4 de novo frameshift variants in autism spectrum disorder as a novel disease–gene association. Hum Genet. 2023;142(3):343–50. https://doi.org/10.1007/s00439-022-02497-y.
Article PubMed CAS Google Scholar
Eisfeldt J, Schuy J, Stattin EL, Kvarnung M, Falk A, Feuk L, et al. Multi-omic investigations of a 17–19 translocation links MINK1 disruption to autism, epilepsy and osteoporosis. Int J Mol Sci. 2022;23(16):9392.
Article PubMed PubMed Central CAS Google Scholar
Larhammar M, Huntwork-Rodriguez S, Rudhard Y, Sengupta-Ghosh A, Lewcock JW. The Ste20 family kinases MAP4K4, MINK1, and TNIK converge to regulate stress-induced JNK signaling in neurons. J Neurosci. 2017;37(46):11074–84.
Article PubMed PubMed Central CAS Google Scholar
Kawasaki A, Okada M, Tamada A, Okuda S, Nozumi M, Ito Y, et al. Growth cone phosphoproteomics reveals that GAP-43 phosphorylated by JNK is a marker of axon growth and regeneration. iScience. 2018;4:190–203. https://doi.org/10.1016/j.isci.2018.05.019.
Article PubMed PubMed Central CAS Google Scholar
Roth Flach RJ, Skoura A, Matevossian A, Danai L V., Zheng W, Cortes C, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6.
Ammirati M, Bagley SW, Bhattacharya SK, Buckbinder L, Carlo AA, Conrad R, et al. Discovery of an in vivo tool to establish proof-of-concept for MAP4K4-based antidiabetic treatment. ACS Med Chem Lett. 2015;6(11):1128–33.
Article PubMed PubMed Central CAS Google Scholar
Egawa J, Arta RK, Lemmon VP, Muños-Barrero M, Shi Y, Igarashi M, et al. The cyclin G-associated kinase (GAK) inhibitor SGC-GAK-1 inhibits neurite outgrowth and synapse formation. Mol Brain. 2022;15(1):1–5.
Coba MP, Komiyama NH, Nithianantharajah J, Kopanitsa MV, Indersmitten T, Skene NG, et al. TNiK is required for postsynaptic and nuclear signaling pathways and cognitive function. J Neurosci. 2012;32(40):13987–99.
Article PubMed PubMed Central CAS Google Scholar
Südhof TC. The cell biology of synapse formation. J Cell Biol. 2021;220(7):1–18.
Coffey ET. Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci. 2014;15(5):285–99. https://doi.org/10.1038/nrn3729.
Article PubMed CAS Google Scholar
Arta RK, Watanabe Y, Inoue E, Nawa Y, Morikawa R, Egawa J, et al. Resequencing and association analysis of GAP43 with autism spectrum disorder and schizophrenia in a Japanese population. Res Autism Spectr Disord. 2021;82:101729. https://doi.org/10.1016/j.rasd.2021.101729.
Holahan MR, Honegger KS, Routtenberg A. Ectopic growth of hippocampal mossy fibers in a mutated GAP-43 transgenic mouse with impaired spatial memory retention. Hippocampus. 2010;20(1):58–64.
Article PubMed PubMed Central CAS Google Scholar
Igarashi M, Kawasaki A, Ishikawa Y, Honda A, Okada M, Okuda S. Phosphoproteomic and bioinformatic methods for analyzing signaling in vertebrate axon growth and regeneration. J Neurosci Methods. 2020;339:108723. https://doi.org/10.1016/j.jneumeth.2020.108723.
Comments (0)