Relationship between resting-state functional connectivity and change in motor function after motor imagery intervention in patients with stroke: a scoping review

Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23(4):313–9.

Article  CAS  PubMed  Google Scholar 

Hendricks HT, van Limbeek J, Geurts AC, Zwarts MJ. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2002;83(11):1629–37.

Article  PubMed  Google Scholar 

Guillot A, Collet C, Nguyen VA, Malouin F, Richards C, Doyon J. Brain activity during visual versus kinesthetic imagery: an fMRI study. Hum Brain Mapp. 2009;30(7):2157–72.

Article  PubMed  Google Scholar 

Roland PE, Larsen B, Lassen NA, Skinhøj E. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol. 1980;43(1):118–36.

Article  CAS  PubMed  Google Scholar 

Yahagi S, Shimura K, Kasai T. An increase in cortical excitability with no change in spinal excitability during motor imagery. Percept Mot Skills. 1996;83(1):288–90.

Article  CAS  PubMed  Google Scholar 

Kasai T, Kawai S, Kawanishi M, Yahagi S. Evidence for facilitation of motor evoked potentials (MEPs) induced by motor imagery. Brain Res. 1997;744(1):147–50.

Article  CAS  PubMed  Google Scholar 

Kaneko F, Yasojima T, Kizuka T. Kinesthetic illusory feeling induced by a finger movement movie effects on corticomotor excitability. Neuroscience. 2007;149(4):976–84.

Article  CAS  PubMed  Google Scholar 

Aoyama T, Kaneko F, Hayami T, Shibata E. The effects of kinesthetic illusory sensation induced by a visual stimulus on the corticomotor excitability of the leg muscles. Neurosci Lett. 2012;514(1):106–9.

Article  CAS  PubMed  Google Scholar 

Kaneko F, Shibata E, Hayami T, Nagahata K, Aoyama T. The association of motor imagery and kinesthetic illusion prolongs the effect of transcranial direct current stimulation on corticospinal tract excitability. J Neuroeng Rehabil. 2016;13:36.

Kaneko F, Inada T. Acute effect of visually induced kinesthetic illusion in patients with stroke: a preliminary report. Int J Neurorehabil. 2016;3:212.

Aoyama T, Kaneko F. The effect of motor imagery on gain modulation of the spinal reflex. Brain Res. 2011;1372:41–8.

Article  CAS  PubMed  Google Scholar 

Kaneko F, Murakami T, Onari K, Kurumadani H, Kawaguchi K. Decreased cortical excitability during motor imagery after disuse of an upper limb in humans. Clin Neurophysiol. 2003;114(12):2397–403.

Article  PubMed  Google Scholar 

Dilena A, Todd G, Berryman C, Rio E, Stanton TR. What is the effect of bodily illusions on corticomotoneuronal excitability? A systematic review. PLoS ONE. 2019;14(8): e0219754.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zimmermann-Schlatter A, Schuster C, Puhan MA, Siekierka E, Steurer J. Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. J Neuroeng Rehabil. 2008;5:8.

Article  PubMed  PubMed Central  Google Scholar 

Monge-Pereira E, Casatorres Perez-Higueras I, Fernandez-Gonzalez P, Ibanez-Pereda J, Serrano JI, Molina-Rueda F. Training cortical signals by means of a BMI-EEG system, its evolution and intervention. A case report. Rev Neurol. 2017;64(8):362–6.

CAS  PubMed  Google Scholar 

Carvalho R, Dias N, Cerqueira JJ. Brain-machine interface of upper limb recovery in stroke patients rehabilitation: a systematic review. Physiother Res Int. 2019;24(2): e1764.

Article  PubMed  Google Scholar 

Guerra ZF, Lucchetti ALG, Lucchetti G. Motor imagery training after stroke: a systematic review and meta-analysis of randomized controlled trials. J Neurol Phys Ther. 2017;41(4):205–14.

Article  PubMed  Google Scholar 

Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–54.

Article  PubMed  Google Scholar 

Biswal B. Resting-state functional connectivity. In: Toga AW, editor. Brain mapping. Waltham: Academic Press; 2015. p. 581–5.

Chapter  Google Scholar 

Baldassarre A, Lewis CM, Committeri G, Snyder AZ, Romani GL, Corbetta M. Individual variability in functional connectivity predicts performance of a perceptual task. Proc Natl Acad Sci U S A. 2012;109(9):3516–21.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cole MW, Yarkoni T, Repovs G, Anticevic A, Braver TS. Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J Neurosci. 2012;32(26):8988–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Powers AR 3rd, Hevey MA, Wallace MT. Neural correlates of multisensory perceptual learning. J Neurosci. 2012;32(18):6263–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vahdat S, Darainy M, Milner TE, Ostry DJ. Functionally specific changes in resting-state sensorimotor networks after motor learning. J Neurosci. 2011;31(47):16907–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Bruyn N, Meyer S, Kessner SS, Essers B, Cheng B, Thomalla G, et al. Functional network connectivity is altered in patients with upper limb somatosensory impairments in the acute phase post stroke: a cross-sectional study. PLoS ONE. 2018;13(10): e0205693.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, Li K-S, Ning Y-Z, Fu C-H, Liu H-W, Han X, et al. Altered structural and functional connectivity between the bilateral primary motor cortex in unilateral subcortical stroke: a multimodal magnetic resonance imaging study. Medicine. 2016;95(31): e4534.

Article  PubMed  PubMed Central  Google Scholar 

Frias I, Starrs F, Gisiger T, Minuk J, Thiel A, Paquette C. Interhemispheric connectivity of primary sensory cortex is associated with motor impairment after stroke. Sci Rep. 2018;8(1):12601.

Article  PubMed  PubMed Central  Google Scholar 

Tsuchimoto S, Shindo K, Hotta F, Hanakawa T, Liu M, Ushiba J. Sensorimotor connectivity after motor exercise with neurofeedback in post-stroke patients with hemiplegia. Neuroscience. 2019;416:109–25.

Article  CAS  PubMed  Google Scholar 

Kaneko F, Shindo K, Yoneta M, Okawada M, Akaboshi K, Liu M. A case series clinical trial of a novel approach using augmented reality that inspires self-body cognition in patients with stroke: effects on motor function and resting-state brain functional connectivity. Front Syst Neurosci. 2019;13:76.

Article  PubMed  PubMed Central  Google Scholar 

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32.

Article  Google Scholar 

Rustamov N, Souders L, Sheehan L, Carter A, Leuthardt EC. IpsiHand brain-computer interface therapy induces broad upper extremity motor recovery in chronic stroke. medRxiv 2023.

Ma ZZ, Wu JJ, Hua XY, Zheng MX, Xing XX, Ma J, et al. Evidence of neuroplasticity with brain-computer interface in a randomized trial for post-stroke rehabilitation: a graph-theoretic study of subnetwork analysis. Front Neurol. 2023;14:1135466.

Article  PubMed  PubMed Central  Google Scholar 

Rustamov N, Humphries J, Carter A, Leuthardt EC. Theta-gamma coupling as a cortical biomarker of brain-computer interface-mediated motor recovery in chronic stroke. Brain Commun. 2022;4(3): fcac136.

Article  PubMed  PubMed Central  Google Scholar 

Yuan K, Chen C, Wang X, Chu WCW, Tong RKY. BCI training effects on chronic stroke correlate with functional reorganization in motor-related regions: a concurrent EEG and fMRI study. Brain Sci. 2021;11(1):56.

Yuan K, Wang X, Chen C, Lau CC, Chu WC, Tong RK. Interhemispheric functional reorganization and its structural base after BCI-guided upper-limb training in chronic stroke. IEEE Trans Neural Syst Rehabil Eng. 2020;28(11):2525–36.

Article  PubMed  Google Scholar 

Wu Q, Yue Z, Ge Y, Ma D, Yin H, Zhao H, et al. Brain functional networks study of subacute stroke patients with upper limb dysfunction after comprehensive rehabilitation including BCI training. Front Neurol. 2019;10:1419.

Article  PubMed  Google Scholar 

Rathee D, Chowdhury A, Meena YK, Dutta A, McDonough S, Prasad G. Brain-machine interface-driven post-stroke upper-limb functional recovery correlates with beta-band mediated cortical networks. IEEE Trans Neural Syst Rehabil Eng. 2019;27(5):1020–31.

Article  PubMed  Google Scholar 

Várkuti B, Guan C, Pan Y, Phua KS, Ang KK, Kuah CW, et al. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil Neural Repair. 2013;27(1):53–62.

Article  PubMed  Google Scholar 

Wang X, Wang HW, Xiong X, Sun CH, Zhu B, Xu YM, et al. Motor imagery training after stroke increases slow-5 oscillations and functional connectivity in the ipsilesional inferior parietal lobule. Neurorehabil Neural Repair. 2020;34(4):321–32.

Article  PubMed  Google Scholar 

Wang H, Xu G, Wang X, Sun C, Zhu B, Fan M, et al. The reorganization of resting-state brain networks associated with motor imagery training in chronic stroke patients. IEEE Trans Neural Syst Rehabil Eng. 2019;27(10):2237–45.

Article  PubMed  Google Scholar 

Zhang Y, Liu H, Wang L, Yang J, Yan R, Zhang J, et al. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study. Neuroradiology. 2016;58(5):503–11.

Article  PubMed 

Comments (0)

No login
gif