Automatic gait events detection with inertial measurement units: healthy subjects and moderate to severe impaired patients

Davis RB. Clinical gait analysis. IEEE Eng Med Biol Mag. 1988;7(3):35–40. https://doi.org/10.1109/51.7933.

Article  CAS  PubMed  Google Scholar 

Davies RJ, Parker J, McCullagh P, Zheng H, Nugent C, Black ND, Mawson S. A personalized self-management rehabilitation system for stroke survivors: a quantitative gait analysis using a smart insole. JMIR Rehabil Assist Technol. 2016;3(2):11. https://doi.org/10.2196/rehab.5449.

Article  Google Scholar 

Vienne-Jumeau A, Quijoux F, Vidal P-P, Ricard D. Wearable inertial sensors provide reliable biomarkers of disease severity in multiple sclerosis: a systematic review and meta-analysis. Ann Phys Rehabil Med. 2020;63(2):138–47. https://doi.org/10.1016/j.rehab.2019.07.004.

Article  PubMed  Google Scholar 

Takeda R, Tadano S, Todoh M, Morikawa M, Nakayasu M, Yoshinari S. Gait analysis using gravitational acceleration measured by wearable sensors. J Biomech. 2009;42(3):223–33. https://doi.org/10.1016/j.jbiomech.2008.10.027.

Article  PubMed  Google Scholar 

Jarchi D, Pope J, Lee TKM, Tamjidi L, Mirzaei A, Sanei S. A review on accelerometry-based gait analysis and emerging clinical applications. IEEE Rev Biomed Eng. 2018;11:177–94. https://doi.org/10.1109/RBME.2018.2807182.

Article  PubMed  Google Scholar 

Marin F, Lepetit K, Fradet L, Hansen C, Ben Mansour K. Using accelerations of single inertial measurement units to determine the intensity level of light-moderate-vigorous physical activities: technical and mathematical considerations. J Biomech. 2020;107: 109834. https://doi.org/10.1016/j.jbiomech.2020.109834.

Article  PubMed  Google Scholar 

Barrois R, Oudre L, Moreau T, Truong C, Vayatis N, Buffat S, Yelnik A, de Waele C, Gregory T, Laporte S, Vidal PP, Ricard D. Quantify osteoarthritis gait at the doctor’s office: a simple pelvis accelerometer based method independent from footwear and aging. Comput Methods Biomech Biomed Eng. 2015;18(Suppl 1):1880–1. https://doi.org/10.1080/10255842.2015.1072414.

Article  Google Scholar 

Vienne A, Barrois RP, Buffat S, Ricard D, Vidal PP. Inertial sensors to assess gait quality in patients with neurological disorders: a systematic review of technical and analytical challenges. Front Psychol. 2017;8(MAY):1–12. https://doi.org/10.3389/fpsyg.2017.00817.

Article  Google Scholar 

Niswander W, Kontson K. Evaluating the impact of imu sensor location and walking task on accuracy of gait event detection algorithms. Sensors. 2021;21(12):3989. https://doi.org/10.3390/s21123989.

Article  PubMed  PubMed Central  Google Scholar 

Dot T, Quijoux F, Oudre L, Vienne-Jumeau A, Moreau A, Vidal PP, Ricard D. Non-linear template-based approach for the study of locomotion. Sensors (Switzerland). 2020;20(7):1–23. https://doi.org/10.3390/s20071939.

Article  Google Scholar 

Murray MP. Gait as a total pattern of movement. Am J Phys Med. 1967;46(1):290–333.

CAS  PubMed  Google Scholar 

Viel E. La Marche Humaine, la Course et Le Saut: Biomécanique, Explorations. Elsevier, France: Normes et Dysfonctionnements; 2000.

Google Scholar 

Pacini Panebianco G, Bisi MC, Stagni R, Fantozzi S. Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements. Gait Posture. 2018;66:76–82. https://doi.org/10.1016/j.gaitpost.2018.08.025.

Article  PubMed  Google Scholar 

Caldas R, Fadel T, Buarque F, Markert B. Adaptive predictive systems applied to gait analysis: a systematic review. Gait Posture. 2020;77:75–82. https://doi.org/10.1016/j.gaitpost.2020.01.021.

Article  PubMed  Google Scholar 

Lim ACY, Natarajan P, Fonseka RD, Maharaj M, Mobbs RJ. The application of artificial intelligence and custom algorithms with inertial wearable devices for gait analysis and detection of gait-altering pathologies in adults: a scoping review of literature. Digital Health 2022;8. https://doi.org/10.1177/20552076221074128

Snijders AH, van de Warrenburg BP, Giladi N, Bloem BR. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol. 2007;6(1):63–74. https://doi.org/10.1016/S1474-4422(06)70678-0.

Article  PubMed  Google Scholar 

Fasano A, Mancini M. Wearable-based mobility monitoring: the long road ahead. Lancet Neurol. 2020;19(5):378–9. https://doi.org/10.1016/S1474-4422(20)30033-8.

Article  PubMed  Google Scholar 

Hendriks MMS, Vos-van der Hulst M, Weijs RWJ, van Lotringen JH, Geurts ACH, Keijsers NLW. Using sensor technology to measure gait capacity and gait performance in rehabilitation inpatients with neurological disorders. Sensors. 2022;22(21):8387. https://doi.org/10.3390/s22218387.

Article  PubMed  PubMed Central  Google Scholar 

Ji N, Zhou H, Guo K, Samuel OW, Huang Z, Xu L, Li G. Appropriate mother wavelets for continuous gait event detection based on time-frequency analysis for hemiplegic and healthy individuals. Sensors (Basel, Switzerland). 2019;19(16):3462. https://doi.org/10.3390/S19163462.

Article  PubMed  Google Scholar 

Maqbool HF, Husman MAB, Awad MI, Abouhossein A, Mehryar P, Iqbal N, Dehghani-Sanij AA. Real-time gait event detection for lower limb amputees using a single wearable sensor. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2016;2016-Octob, 5067–5070. https://doi.org/10.1109/EMBC.2016.7591866.

Muthukrishnan N, Abbas JJ, Krishnamurthi N. A wearable sensor system to measure step-based gait parameters for Parkinson’s disease rehabilitation. Sensors (Switzerland). 2020;20(22):1–13. https://doi.org/10.3390/S20226417.

Article  Google Scholar 

Romijnders R, Warmerdam E, Hansen C, Welzel J, Schmidt G, Maetzler W. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson’s disease patients. J Neuroeng Rehabil. 2021;18(1):28. https://doi.org/10.1186/s12984-021-00828-0.

Article  PubMed  PubMed Central  Google Scholar 

Romijnders R, Warmerdam E, Hansen C, Schmidt G, Maetzler W. A deep learning approach for gait event detection from a single Shank-Worn IMU: validation in healthy and neurological cohorts. Sensors. 2022;22(10):3859. https://doi.org/10.3390/s22103859.

Article  PubMed  PubMed Central  Google Scholar 

Prasanth H, Caban M, Keller U, Courtine G, Ijspeert A, Vallery H, von Zitzewitz J. Wearable sensor-based real-time gait detection: a systematic review. Sensors. 2021;21(8):1–28. https://doi.org/10.3390/s21082727.

Article  Google Scholar 

Taborri J, Rossi S, Palermo E, Patanè F, Cappa P. A novel HMM distributed classifier for the detection of gait phases by means of a wearable inertial sensor network. Sensors (Switzerland). 2014;14(9):16212–34. https://doi.org/10.3390/s140916212.

Article  Google Scholar 

Trojaniello D, Cereatti A, Pelosin E, Avanzino L, Mirelman A, Hausdorff JM, DellaCroce U. Estimation of step-by-step spazio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors. J Neuroeng Rehabil. 2014;11:152.

Article  PubMed  PubMed Central  Google Scholar 

Barth J, Oberndorfer C, Pasluosta C, Schülein S, Gassner H, Reinfelder S, Kugler P, Schuldhaus D, Winkler J, Klucken J, Eskofier BM. Stride segmentation during free walk movements using multi-dimensional subsequence dynamic time warping on inertial sensor data. Sensors (Switzerland). 2015;15(3):6419–40. https://doi.org/10.3390/s150306419.

Article  PubMed Central  Google Scholar 

Vienne-Jumeau A, Oudre L, Moreau A, Quijoux F, Edmond S, Dandrieux M, Legendre E, Vidal PP, Ricard D. Personalized template-based step detection from inertial measurement units signals in multiple sclerosis. Front Neurol. 2020;11:261. https://doi.org/10.3389/fneur.2020.00261.

Article  PubMed  PubMed Central  Google Scholar 

Oudre L, Barrois-Müller R, Moreau T, Truong C, Vienne-Jumeau A, Ricard D, Vayatis N, Vidal PP. Template-based step detection with inertial measurement units. Sensors (Switzerland). 2018;18(11):1–17. https://doi.org/10.3390/s18114033.

Article  Google Scholar 

Mantilla J, Oudre L, Barrois R, Vienne Á, Ricard D. Template-DTW based on inertial signals: preliminary results for step characterization. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference 2017;2017: 2267–2270. https://doi.org/10.1109/EMBC.2017.8037307

Shokoohi-Yekta M, Hu B, Jin H, Wang J, Keogh E. Generalizing DTW to the multi-dimensional case requires an adaptive approach HHS Public Access. Data Min Knowl Discov. 2017;31(1):1–31. https://doi.org/10.1007/s10618-016-0455-0.

Article  PubMed  Google Scholar 

Santos J, Costa A, Nicolau MJ. Autocorrelation analysis of accelerometer signal to detect and count steps of smartphone users. In: 2019 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2019 2019. https://doi.org/10.1109/IPIN.2019.8911755.

Van Benschoten A, Ouyang A, Bischoff F, Marrs T (2020) MPA: a novel cross-language API for time series analysis. J Open Sour Softw. 5(49), 2179. https://doi.org/10.21105/joss.02179

Bilney B, Morris M, Webster K. Concurrent related validity of the GAITRite® walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture. 2003;17(1):68–74. https://doi.org/10.1016/S0966-6362(02)00053-X.

Article  PubMed  Google Scholar 

Storm FA, Cesareo A, Reni G, Biffi E. Wearable inertial sensors to assess gait during the 6-minute walk test: a systematic review. Sensors. 2020;20:2660. https://doi.org/10.3390/S20092660.

Article  PubMed 

Comments (0)

No login
gif