Characterization of critical parameters using an air–liquid interface model with RPMI 2650 cells for permeability studies of small molecules

Chamanza R, Wright JA. A review of the comparative anatomy, histology, physiology and pathology of the nasal cavity of rats, mice, dogs and non-human primates. Relevance to inhalation toxicology and human health risk assessment. J Comp Pathol. 2015;153:287–314.

Keller L-A, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res. 2022;12:735–57.

Bai S, Yang T, Abbruscato TJ, Ahsan F. Evaluation of human nasal RPMI 2650 cells grown at an air-liquid interface as a model for nasal drug transport studies. J Pharm Sci. 2008;97:1165–78.

Article  CAS  PubMed  Google Scholar 

The principles of humane experimental technique. Med J Aust. 1960;1.

Haasbroek-Pheiffer A, Viljoen A, Steenekamp J, Chen W, Hamman J. An ex vivo investigation on drug permeability of sheep nasal epithelial tissue membranes from the respiratory and olfactory regions. Curr Drug Deliv. 2022.

Karasulu E, Yavaşoğlu A, Evrenşanal Z, Uyanıkgil Y, Karasulu HY. Permeation studies and histological examination of sheep nasal mucosa following administration of different nasal formulations with or without absorption enhancers. Drug Deliv. 2008;15:219–25.

Article  CAS  PubMed  Google Scholar 

Ladel S, Maigler F, Flamm J, Schlossbauer P, Handl A, Hermann R, et al. Impact of glycosylation and species origin on the uptake and permeation of IgGs through the nasal airway mucosa. Pharmaceutics. 2020;12.

Wadell C, Björk E, Camber O. Permeability of porcine nasal mucosa correlated with human nasal absorption. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2003;18:47–53.

CAS  Google Scholar 

Sibinovska N, Žakelj S, Kristan K. Suitability of RPMI 2650 cell models for nasal drug permeability prediction. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2019;145:85–95.

Article  CAS  Google Scholar 

Mercier C, Perek N, Delavenne X. Is RPMI 2650 a suitable in vitro nasal model for drug transport studies? Eur J Drug Metab Pharmacokinet. 2018;43:13–24.

Article  CAS  PubMed  Google Scholar 

Moore GE, Sandberg AA. Studies of a human tumor cell line with a diploid karyotype. Cancer. 1964;17:170–5.

Article  CAS  PubMed  Google Scholar 

De Fraissinette A, Brun R, Felix H, Vonderscher J, Rummelt A. Evaluation of the human cell line RPMI 2650 as an in vitro nasal model. Rhinology. 1995;33:194–8.

PubMed  Google Scholar 

Werner U, Kissel T. In-vitro cell culture models of the nasal epithelium: a comparative histochemical investigation of their suitability for drug transport studies. Pharm Res. 1996;13:978–88.

Article  CAS  PubMed  Google Scholar 

Gerber W, Svitina H, Steyn D, Peterson B, Kotzé A, Weldon C, et al. Comparison of RPMI 2650 cell layers and excised sheep nasal epithelial tissues in terms of nasal drug delivery and immunocytochemistry properties. J Pharmacol Toxicol Methods. 2022;113:107131.

Article  CAS  PubMed  Google Scholar 

Kreft ME, Jerman UD, Lasič E, Lanišnik Rižner T, Hevir-Kene N, Peternel L, et al. The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm Res. 2015;32:665–79.

Article  CAS  PubMed  Google Scholar 

Ladel S, Schlossbauer P, Flamm J, Luksch H, Mizaikoff B, Schindowski K. Improved in vitro model for intranasal mucosal drug delivery: primary olfactory and respiratory epithelial cells compared with the permanent nasal cell line RPMI 2650. Pharmaceutics. 2019;11.

Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol. 2009;1:a002584.

Article  PubMed  PubMed Central  Google Scholar 

Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015;20:107–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kürti L, Veszelka S, Bocsik A, Ozsvári B, Puskás LG, Kittel A, et al. Retinoic acid and hydrocortisone strengthen the barrier function of human RPMI 2650 cells, a model for nasal epithelial permeability. Cytotechnology. 2013;65:395–406.

Article  PubMed  Google Scholar 

Pozzoli M, Ong HX, Morgan L, Sukkar M, Traini D, Young PM, et al. Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2016;107:223–33.

Article  CAS  Google Scholar 

Wengst A, Reichl S. RPMI 2650 epithelial model and three-dimensional reconstructed human nasal mucosa as in vitro models for nasal permeation studies. Eur J Pharm Biopharm. 2010;74:290–7.

Article  CAS  PubMed  Google Scholar 

Ye D, López Mármol Á, Lenz V, Muschong P, Wilhelm-Alkubaisi A, Weinheimer M, et al. Mucin-protected Caco-2 assay to study drug permeation in the presence of complex biorelevant media. Pharmaceutics. 2022;14:699.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dolberg AM, Reichl S. Expression of P-glycoprotein in excised human nasal mucosa and optimized models of RPMI 2650 cells. Int J Pharm. 2016;508:22–33.

Article  CAS  PubMed  Google Scholar 

Mercier C, Hodin S, He Z, Perek N, Delavenne X. Pharmacological characterization of the RPMI 2650 model as a relevant tool for assessing the permeability of intranasal drugs. Mol Pharm. 2018;15:2246–56.

Article  CAS  PubMed  Google Scholar 

EMA. ICH M9 guideline on biopharmaceutics classification system-based biowaivers. [Internet]. 2020. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-m9-biopharmaceutics-classification-system-based-biowaivers-step-5_en.pdf.

Mallants R, Vlaeminck V, Jorissen M, Augustijns P. An improved primary human nasal cell culture for the simultaneous determination of transepithelial transport and ciliary beat frequency. J Pharm Pharmacol. 2009;61:883–90.

Article  CAS  PubMed  Google Scholar 

Lee M-K, Yoo J-W, Lin H, Kim Y-S, Kim D-D, Choi Y-M, et al. Air-liquid interface culture of serially passaged human nasal epithelial cell monolayer for in vitro drug transport studies. Drug Deliv. 2005;12:305–11.

Article  CAS  PubMed  Google Scholar 

Gonçalves VSS, Matias AA, Poejo J, Serra AT, Duarte CMM. Application of RPMI 2650 as a cell model to evaluate solid formulations for intranasal delivery of drugs. Int J Pharm. 2016;515:1–10.

Article  PubMed  Google Scholar 

Hughes P, Marshall D, Reid Y, Parkes H, Gelber C. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques. 2007;43:575–86.

Article  CAS  PubMed  Google Scholar 

Illum L. Nasal drug delivery—possibilities, problems and solutions. J Controlled Release. 2003;87:187–98.

Article  CAS  Google Scholar 

Illum L. Nasal drug delivery: new developments and strategies. Drug Discov Today. 2002;7:1184–9.

Article  CAS  PubMed  Google Scholar 

Zur M, Gasparini M, Wolk O, Amidon GL, Dahan A. The low/high BCS permeability class boundary: physicochemical comparison of metoprolol and labetalol. Mol Pharm. 2014;11:1707–14.

Article  CAS  PubMed  Google Scholar 

Chamberlain CA, Rubio VY, Garrett TJ. Impact of matrix effects and ionization efficiency in non-quantitative untargeted metabolomics. Metabolomics Off J Metabolomic Soc. 2019;15:135.

Google Scholar 

Dams R, Huestis MA, Lambert WE, Murphy CM. Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom. 2003;14:1290–4.

Article  CAS  PubMed  Google Scholar 

Marttin E, Schipper NG, Verhoef JC, Merkus FWH. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29:13–38.

Article  CAS  PubMed  Google Scholar 

Pandya VK, Tiwari RS. Nasal mucociliary clearance in health and disease. Indian J Otolaryngol Head Neck Surg. 2006;58:332–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sigurdsson HH, Kirch J, Lehr C-M. Mucus as a barrier to lipophilic drugs. Int J Pharm. 2013;453:56–64.

Article  CAS  PubMed  Google Scholar 

Pohl EE, Krylov AV, Block M, Pohl P. Changes of the membrane potential profile induced by verapamil and propranolol. Biochim Biophys Acta BBA - Biomembr. 1998;1373:170–8.

Article  CAS  Google Scholar 

Berger JT, Voynow JA, Peters KW, Rose MC. Respiratory carcinoma cell lines. Am J Respir Cell Mol Biol. 1999;20:500–10.

Article  CAS  PubMed  Google Scholar 

Collett A, Tanianis-Hughes J, Warhurst G. Rapid induction of P-glycoprotein expression by high permeability compounds in colonic cells in vitro: a possible source of transporter mediated drug interactions? Biochem Pharmacol. 2004;68:783–90.

Article  CAS  PubMed  Google Scholar 

Bachmakov I, Werner U, Endress B, Auge D, Fromm MF. Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein. Fundam Clin Pharmacol. 2006;20:273–82.

Article  CAS  PubMed  Google Scholar 

Yang JJ, Kim KJ, Lee VH. Role of P-glycoprotein in restricting propranolol transport in cultured rabbit conjunctival epithelial cell layers. Pharm Res. 2000;17:533–8.

Article  CAS  PubMed  Google Scholar 

Bruewer M, Nusrat A. Regulation of paracellular transport across tight junctions by the actin cytoskeleton [internet]. Landes Bioscience; 2013 [cited 2023 Jan 2]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK6487/.

Cho H-J, Balakrishnan P, Lin H, Choi M-K, Kim D-D. Application of biopharmaceutics classification system (BCS) in drug transport studies across human respiratory epithelial cell monolayers. J Ph

留言 (0)

沒有登入
gif