Antibiotic resistance and tolerance: What can drug delivery do against this global threat?

Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320–30. https://doi.org/10.1038/nrmicro.2016.34.

Article  CAS  PubMed  Google Scholar 

Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–10. https://doi.org/10.2147/IDR.S234610.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsunaga N, Hayakawa K. Estimating the impact of antimicrobial resistance. Lancet Glob Health. 2018;6:e934–5. https://doi.org/10.1016/S2214-109X(18)30325-5.

Article  PubMed  Google Scholar 

Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399:629–55. https://doi.org/10.1016/S0140-6736(21)02724-0.

Article  CAS  Google Scholar 

Frei A, Verderosa AD, Elliott AG, et al. Metals to combat antimicrobial resistance. Nat Rev Chem. 2023;7:202–24. https://doi.org/10.1038/s41570-023-00463-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Global antimicrobial resistance and use surveillance system (GLASS) Report: 2022. World Health Organization; 2022. https://www.who.int/publications/i/item/9789240062702. Accessed 15 Jan 2024

Press release: high-level meeting on antimicrobial resistance. World Health Organization; 2016. https://www.un.org/pga/71/2016/09/21/press-release-hl-meeting-on-antimicrobial-resistance/. Accessed 15 Jan 2024

Haghighatpanah M, Mozaffari Nejad AS, Mojtahedi A, et al. Detection of extended-spectrum β-lactamase (ESBL) and plasmid-borne blaCTX-M and blaTEM genes among clinical strains of Escherichia coli isolated from patients in the north of Iran. J Glob Antimicrob Resist. 2016;7:110–3. https://doi.org/10.1016/j.jgar.2016.08.005.

Article  PubMed  Google Scholar 

Riduan SN, Armugam A, Zhang Y. Antibiotic resistance mitigation: the development of alternative general strategies. J Mater Chem B. 2020;8:6317–21. https://doi.org/10.1039/D0TB01241F.

Article  CAS  PubMed  Google Scholar 

Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed. 2014;53:8840–69. https://doi.org/10.1002/anie.201310843.

Article  CAS  Google Scholar 

Taati Moghadam M, Amirmozafari N, Shariati A, et al. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist. 2020;13:45–61. https://doi.org/10.2147/IDR.S234353.

Article  PubMed  PubMed Central  Google Scholar 

Annunziato G. Strategies to overcome antimicrobial resistance (amr) making use of non-essential target inhibitors: a review. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20235844.

Murugaiyan J, Kumar PA, Rao GS, et al. Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics. 2022;11:200. https://doi.org/10.3390/antibiotics11020200.

Ropponen H-K, Richter R, Hirsch AKH, Lehr C-M. Mastering the Gram-negative bacterial barrier – Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev. 2021;172:339–60. https://doi.org/10.1016/j.addr.2021.02.014.

Article  CAS  PubMed  Google Scholar 

Thorn CR, de Carvalho-Wodarz C, S, Horstmann JC, et al. Tobramycin liquid crystal nanoparticles eradicate cystic fibrosis-related Pseudomonas aeruginosa biofilms. Small. 2021;17:e2100531. https://doi.org/10.1002/smll.202100531.

Article  CAS  PubMed  Google Scholar 

Nafee N, Husari A, Maurer CK, et al. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release. 2014;192:131–40. https://doi.org/10.1016/j.jconrel.2014.06.055.

Article  CAS  PubMed  Google Scholar 

Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2:a000414. https://doi.org/10.1101/cshperspect.a000414.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev. 2021;177:113948. https://doi.org/10.1016/j.addr.2021.113948.

Article  CAS  PubMed  Google Scholar 

Maghrebi S, Joyce P, Jambhrunkar M, et al. Poly(lactic- co -glycolic) acid–lipid hybrid microparticles enhance the intracellular uptake and antibacterial activity of rifampicin. ACS Appl Mater Interfaces. 2020;12:8030–9. https://doi.org/10.1021/acsami.9b22991.

Article  CAS  PubMed  Google Scholar 

Subramaniam S, Joyce P, Prestidge CA. Liquid crystalline lipid nanoparticles improve the antibacterial activity of tobramycin and vancomycin against intracellular Pseudomonas aeruginosa and Staphylococcus aureus. Int J Pharm. 2023;639:122927. https://doi.org/10.1016/j.ijpharm.2023.122927.

Article  CAS  PubMed  Google Scholar 

Thorn CR, Thomas N, Boyd BJ, Prestidge CA. Nano-fats for bugs: the benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv Transl Res. 2021;11:1598–624. https://doi.org/10.1007/s13346-021-00921-w.

Article  CAS  PubMed  Google Scholar 

Graef F, Vukosavljevic B, Michel J-P, et al. The bacterial cell envelope as delimiter of anti-infective bioavailability – an in vitro permeation model of the Gram-negative bacterial inner membrane. J Control Release. 2016;243:214–24. https://doi.org/10.1016/j.jconrel.2016.10.018.

Article  CAS  PubMed  Google Scholar 

Huck BC, Thiyagarajan D, Bali A, et al. Nano-in-microparticles for aerosol delivery of antibiotic-loaded, fucose-derivatized, and macrophage-targeted liposomes to combat mycobacterial infections: in vitro deposition, pulmonary barrier interactions, and targeted delivery. Adv Healthc Mater. 2022;11:2102117. https://doi.org/10.1002/adhm.202102117.

Article  CAS  Google Scholar 

Gabelmann A, Lehr C-M, Grohganz H. Preparation of co-amorphous levofloxacin systems for pulmonary application. Pharmaceutics. 2023;15:1574. https://doi.org/10.3390/pharmaceutics15061574.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sousa CF, Kamal MAM, Richter R, et al. modeling the effect of hydrophobicity on the passive permeation of solutes across a bacterial model membrane. J Chem Inf Model. 2022;62:5023–33. https://doi.org/10.1021/acs.jcim.2c00767.

Article  CAS  PubMed  Google Scholar 

Horstmann JC, Laric A, Boese A, et al. Transferring microclusters of P. aeruginosa biofilms to the air–liquid interface of bronchial epithelial cells for repeated deposition of aerosolized tobramycin. ACS Infect Dis. 2022;8:137–49. https://doi.org/10.1021/acsinfecdis.1c00444.

Article  CAS  PubMed  Google Scholar 

Pérez-López A, Martín-Sabroso C, Torres-Suárez AI, Aparicio-Blanco J. Timeline of translational formulation technologies for cancer therapy: successes, failures, and lessons learned therefrom. Pharmaceutics. 2020;12:1028. https://doi.org/10.3390/pharmaceutics12111028.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramaniam S, Joyce P, Donnellan L, et al. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles. J Colloid Interface Sci. 2023;641:36–47. https://doi.org/10.1016/j.jcis.2023.03.048.

Article  CAS  PubMed  Google Scholar 

Gostimskaya I. CRISPR-Cas9: a history of its discovery and ethical considerations of its use in genome editing. Biochemistry (Mosc). 2022;87:777–88. https://doi.org/10.1134/S0006297922080090.

Article  CAS  PubMed  Google Scholar 

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science (1979). 2014;346. https://doi.org/10.1126/science.1258096.

Strich JR, Chertow DS. CRISPR-Cas biology and its application to infectious diseases. J Clin Microbiol. 2019;57. https://doi.org/10.1128/JCM.01307-18.

Jain S, Venkataraman A, Wechsler ME, Peppas NA. Messenger RNA-based vaccines: past, present, and future directions in the context of the COVID-19 pandemic. Adv Drug Deliv Rev. 2021;179:114000. https://doi.org/10.1016/j.addr.2021.114000.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Machado BAS, Hodel KVS, dos Fonseca LM, S, et al. The importance of RNA-based vaccines in the fight against COVID-19: an overview. Vaccines (Basel). 2021;9:1345. https://doi.org/10.3390/vaccines9111345.

Article  CAS  PubMed  Google Scholar 

Lahiri D, Nag M, Dey A, et al. Nanoparticles based antibacterial vaccines: novel strategy to combat antimicrobial resistance. Process Biochem. 2022;119:82–9. https://doi.org/10.1016/j.procbio.2022.05.011.

Article  CAS  Google Scholar 

Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23:265–80. https://doi.org/10.1038/s41576-021-00439-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25:219–32. https://doi.org/10.1016/j.chom.2019.01.014.

Article  CAS  PubMed  Google Scholar 

Karthik K. Bacteriophages: effective alternative to antibiotics. Adv Anim Vet Sci. 2014;2:1–7. https://doi.org/10.14737/journal.aavs/2014/2.3s.1.7.

Romero-Calle D, Guimarães Benevides R, Góes-Neto A, Billington C. Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics. 2019;8:138. https://doi.org/10.3390/antibiotics8030138.

Article  CAS  PubMed 

Comments (0)

No login
gif