Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol. 2016;14:320–30. https://doi.org/10.1038/nrmicro.2016.34.
Article CAS PubMed Google Scholar
Dadgostar P. Antimicrobial resistance: implications and costs. Infect Drug Resist. 2019;12:3903–10. https://doi.org/10.2147/IDR.S234610.
Article CAS PubMed PubMed Central Google Scholar
Matsunaga N, Hayakawa K. Estimating the impact of antimicrobial resistance. Lancet Glob Health. 2018;6:e934–5. https://doi.org/10.1016/S2214-109X(18)30325-5.
Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399:629–55. https://doi.org/10.1016/S0140-6736(21)02724-0.
Frei A, Verderosa AD, Elliott AG, et al. Metals to combat antimicrobial resistance. Nat Rev Chem. 2023;7:202–24. https://doi.org/10.1038/s41570-023-00463-4.
Article CAS PubMed PubMed Central Google Scholar
Global antimicrobial resistance and use surveillance system (GLASS) Report: 2022. World Health Organization; 2022. https://www.who.int/publications/i/item/9789240062702. Accessed 15 Jan 2024
Press release: high-level meeting on antimicrobial resistance. World Health Organization; 2016. https://www.un.org/pga/71/2016/09/21/press-release-hl-meeting-on-antimicrobial-resistance/. Accessed 15 Jan 2024
Haghighatpanah M, Mozaffari Nejad AS, Mojtahedi A, et al. Detection of extended-spectrum β-lactamase (ESBL) and plasmid-borne blaCTX-M and blaTEM genes among clinical strains of Escherichia coli isolated from patients in the north of Iran. J Glob Antimicrob Resist. 2016;7:110–3. https://doi.org/10.1016/j.jgar.2016.08.005.
Riduan SN, Armugam A, Zhang Y. Antibiotic resistance mitigation: the development of alternative general strategies. J Mater Chem B. 2020;8:6317–21. https://doi.org/10.1039/D0TB01241F.
Article CAS PubMed Google Scholar
Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed. 2014;53:8840–69. https://doi.org/10.1002/anie.201310843.
Taati Moghadam M, Amirmozafari N, Shariati A, et al. How phages overcome the challenges of drug resistant bacteria in clinical infections. Infect Drug Resist. 2020;13:45–61. https://doi.org/10.2147/IDR.S234353.
Article PubMed PubMed Central Google Scholar
Annunziato G. Strategies to overcome antimicrobial resistance (amr) making use of non-essential target inhibitors: a review. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20235844.
Murugaiyan J, Kumar PA, Rao GS, et al. Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics. 2022;11:200. https://doi.org/10.3390/antibiotics11020200.
Ropponen H-K, Richter R, Hirsch AKH, Lehr C-M. Mastering the Gram-negative bacterial barrier – Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev. 2021;172:339–60. https://doi.org/10.1016/j.addr.2021.02.014.
Article CAS PubMed Google Scholar
Thorn CR, de Carvalho-Wodarz C, S, Horstmann JC, et al. Tobramycin liquid crystal nanoparticles eradicate cystic fibrosis-related Pseudomonas aeruginosa biofilms. Small. 2021;17:e2100531. https://doi.org/10.1002/smll.202100531.
Article CAS PubMed Google Scholar
Nafee N, Husari A, Maurer CK, et al. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release. 2014;192:131–40. https://doi.org/10.1016/j.jconrel.2014.06.055.
Article CAS PubMed Google Scholar
Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010;2:a000414. https://doi.org/10.1101/cshperspect.a000414.
Article CAS PubMed PubMed Central Google Scholar
Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev. 2021;177:113948. https://doi.org/10.1016/j.addr.2021.113948.
Article CAS PubMed Google Scholar
Maghrebi S, Joyce P, Jambhrunkar M, et al. Poly(lactic- co -glycolic) acid–lipid hybrid microparticles enhance the intracellular uptake and antibacterial activity of rifampicin. ACS Appl Mater Interfaces. 2020;12:8030–9. https://doi.org/10.1021/acsami.9b22991.
Article CAS PubMed Google Scholar
Subramaniam S, Joyce P, Prestidge CA. Liquid crystalline lipid nanoparticles improve the antibacterial activity of tobramycin and vancomycin against intracellular Pseudomonas aeruginosa and Staphylococcus aureus. Int J Pharm. 2023;639:122927. https://doi.org/10.1016/j.ijpharm.2023.122927.
Article CAS PubMed Google Scholar
Thorn CR, Thomas N, Boyd BJ, Prestidge CA. Nano-fats for bugs: the benefits of lipid nanoparticles for antimicrobial therapy. Drug Deliv Transl Res. 2021;11:1598–624. https://doi.org/10.1007/s13346-021-00921-w.
Article CAS PubMed Google Scholar
Graef F, Vukosavljevic B, Michel J-P, et al. The bacterial cell envelope as delimiter of anti-infective bioavailability – an in vitro permeation model of the Gram-negative bacterial inner membrane. J Control Release. 2016;243:214–24. https://doi.org/10.1016/j.jconrel.2016.10.018.
Article CAS PubMed Google Scholar
Huck BC, Thiyagarajan D, Bali A, et al. Nano-in-microparticles for aerosol delivery of antibiotic-loaded, fucose-derivatized, and macrophage-targeted liposomes to combat mycobacterial infections: in vitro deposition, pulmonary barrier interactions, and targeted delivery. Adv Healthc Mater. 2022;11:2102117. https://doi.org/10.1002/adhm.202102117.
Gabelmann A, Lehr C-M, Grohganz H. Preparation of co-amorphous levofloxacin systems for pulmonary application. Pharmaceutics. 2023;15:1574. https://doi.org/10.3390/pharmaceutics15061574.
Article CAS PubMed PubMed Central Google Scholar
Sousa CF, Kamal MAM, Richter R, et al. modeling the effect of hydrophobicity on the passive permeation of solutes across a bacterial model membrane. J Chem Inf Model. 2022;62:5023–33. https://doi.org/10.1021/acs.jcim.2c00767.
Article CAS PubMed Google Scholar
Horstmann JC, Laric A, Boese A, et al. Transferring microclusters of P. aeruginosa biofilms to the air–liquid interface of bronchial epithelial cells for repeated deposition of aerosolized tobramycin. ACS Infect Dis. 2022;8:137–49. https://doi.org/10.1021/acsinfecdis.1c00444.
Article CAS PubMed Google Scholar
Pérez-López A, Martín-Sabroso C, Torres-Suárez AI, Aparicio-Blanco J. Timeline of translational formulation technologies for cancer therapy: successes, failures, and lessons learned therefrom. Pharmaceutics. 2020;12:1028. https://doi.org/10.3390/pharmaceutics12111028.
Article CAS PubMed PubMed Central Google Scholar
Subramaniam S, Joyce P, Donnellan L, et al. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles. J Colloid Interface Sci. 2023;641:36–47. https://doi.org/10.1016/j.jcis.2023.03.048.
Article CAS PubMed Google Scholar
Gostimskaya I. CRISPR-Cas9: a history of its discovery and ethical considerations of its use in genome editing. Biochemistry (Mosc). 2022;87:777–88. https://doi.org/10.1134/S0006297922080090.
Article CAS PubMed Google Scholar
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science (1979). 2014;346. https://doi.org/10.1126/science.1258096.
Strich JR, Chertow DS. CRISPR-Cas biology and its application to infectious diseases. J Clin Microbiol. 2019;57. https://doi.org/10.1128/JCM.01307-18.
Jain S, Venkataraman A, Wechsler ME, Peppas NA. Messenger RNA-based vaccines: past, present, and future directions in the context of the COVID-19 pandemic. Adv Drug Deliv Rev. 2021;179:114000. https://doi.org/10.1016/j.addr.2021.114000.
Article CAS PubMed PubMed Central Google Scholar
Machado BAS, Hodel KVS, dos Fonseca LM, S, et al. The importance of RNA-based vaccines in the fight against COVID-19: an overview. Vaccines (Basel). 2021;9:1345. https://doi.org/10.3390/vaccines9111345.
Article CAS PubMed Google Scholar
Lahiri D, Nag M, Dey A, et al. Nanoparticles based antibacterial vaccines: novel strategy to combat antimicrobial resistance. Process Biochem. 2022;119:82–9. https://doi.org/10.1016/j.procbio.2022.05.011.
Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23:265–80. https://doi.org/10.1038/s41576-021-00439-4.
Article CAS PubMed PubMed Central Google Scholar
Kortright KE, Chan BK, Koff JL, Turner PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25:219–32. https://doi.org/10.1016/j.chom.2019.01.014.
Article CAS PubMed Google Scholar
Karthik K. Bacteriophages: effective alternative to antibiotics. Adv Anim Vet Sci. 2014;2:1–7. https://doi.org/10.14737/journal.aavs/2014/2.3s.1.7.
Romero-Calle D, Guimarães Benevides R, Góes-Neto A, Billington C. Bacteriophages as alternatives to antibiotics in clinical care. Antibiotics. 2019;8:138. https://doi.org/10.3390/antibiotics8030138.
Comments (0)