Micropetrosis: Osteocyte Lacunar Mineralization in Aging and Disease

Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab. 2010;21(6):369–74. https://doi.org/10.1016/j.tem.2010.01.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milovanovic P, Busse B. Inter-site variability of the human osteocyte lacunar network: Implications for bone quality. Curr Osteoporos Rep. 2019;17(3):105–15. https://doi.org/10.1007/s11914-019-00508-y.

Article  PubMed  Google Scholar 

Milovanovic P, Busse B. Phenomenon of osteocyte lacunar mineralization: Indicator of former osteocyte death and a novel marker of impaired bone quality? Endocr Connect. 2020. https://doi.org/10.1530/ec-19-0531.

Article  PubMed  PubMed Central  Google Scholar 

Frost HM. In vivo osteocyte death. J Bone Joint Surg Am Vol. 1960;42(1):138–43.

Article  Google Scholar 

Tomkinson A, Gevers EF, Wit JM, Reeve J, Noble BS. The role of estrogen in the control of rat osteocyte apoptosis. J Bone Mineral Res. 1998;13(8):1243–50.

Article  CAS  Google Scholar 

Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997;82(9):3128–35. https://doi.org/10.1210/jc.82.9.3128.

Article  CAS  PubMed  Google Scholar 

Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation. J Biol Chem. 2005;280(8):7317–25. https://doi.org/10.1074/jbc.M412817200.

Article  CAS  PubMed  Google Scholar 

Florencio-Silva R, Sasso GRS, Sasso-Cerri E, Simões MJ, Cerri PS. Effects of estrogen status in osteocyte autophagy and its relation to osteocyte viability in alveolar process of ovariectomized rats. Biomed Pharmacother. 2018;98:406–15. https://doi.org/10.1016/j.biopha.2017.12.089.

Article  CAS  PubMed  Google Scholar 

Domazetovic V, Falsetti I, Ciuffi S, Iantomasi T, Marcucci G, Vincenzini MT, et al. Effect of oxidative stress-induced apoptosis on active FGF23 levels in MLO-Y4 cells: The protective role of 17-β-estradiol. Int J Mol Sci. 2022;23(4):2103. https://doi.org/10.3390/ijms23042103.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Montesi M, Jähn K, Bonewald L, Stea S, Bordini B, Beraudi A. Hypoxia mediates osteocyte ORP150 expression and cell death in vitro. Mol Med Rep. 2016;14(5):4248–54. https://doi.org/10.3892/mmr.2016.5790.

Article  CAS  PubMed  Google Scholar 

Kurihara M, Mukudai Y, Watanabe H, Asakura M, Abe Y, Houri A, et al. Autophagy prevents osteocyte cell death under hypoxic conditions. Cells Tissues Organs. 2021;210(5–6):326–38. https://doi.org/10.1159/000519086.

Article  CAS  PubMed  Google Scholar 

Dekker H, Schulten EAJM, Lichters I, van Ruijven L, van Essen HW, Blom G-J, et al. Osteocyte apoptosis, bone marrow adiposity, and fibrosis in the irradiated human mandible. Adv Radiat Oncol. 2022;7(4):100951. https://doi.org/10.1016/j.adro.2022.100951.

Article  PubMed  PubMed Central  Google Scholar 

Alessio N, Esposito G, Galano G, De Rosa R, Anello P, Peluso G, et al. Irradiation of mesenchymal stromal cells with low and high doses of alpha particles induces senescence and/or apoptosis. J Cell Biochem. 2017;118(9):2993–3002. https://doi.org/10.1002/jcb.25961.

Article  CAS  PubMed  Google Scholar 

Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, et al. Mechanical loading: Biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol. 2003;284(4):C934-43. https://doi.org/10.1152/ajpcell.00234.2002.

Article  CAS  PubMed  Google Scholar 

Frost HM. Micropetrosis. J Bone Joint Surg Am Vol. 1960;42:144–50.

Article  Google Scholar 

Kingsmill VJ, Boyde A. Mineralisation density of human mandibular bone: Quantitative backscattered electron image analysis. J Anat. 1998;192(2):245–56. https://doi.org/10.1046/j.1469-7580.1998.19220245.x.

Article  PubMed  PubMed Central  Google Scholar 

Boyde A, Hendel P, Hendel R, Maconnachie E, Jones SJ. Human cranial bone structure and the healing of cranial bone grafts: A study using backscattered electron imaging and confocal microscopy. Anat Embryol. 1990;181(3):235–51.

Article  CAS  Google Scholar 

Boyde A. The real response of bone to exercise. J Anat. 2003;203(2):173–89.

Article  PubMed  PubMed Central  Google Scholar 

Bell LS, Kayser M, Jones C. The mineralized osteocyte: A living fossil. Am J Phys Anthropol. 2008;137(4):449–56.

Article  PubMed  Google Scholar 

Milovanovic P, Zimmermann EA, vom Scheidt A, Hoffmann B, Sarau G, Yorgan T, et al. The formation of calcified nanospherites during micropetrosis represents a unique mineralization mechanism in aged human bone. Small. 2017;13(3):1602215-n/a. https://doi.org/10.1002/smll.201602215.

Article  CAS  Google Scholar 

Busse B, Djonic D, Milovanovic P, Hahn M, Puschel K, Ritchie RO, et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9(6):1065–75. https://doi.org/10.1111/j.1474-9726.2010.00633.x.

Article  CAS  PubMed  Google Scholar 

Milovanovic P, Zimmermann EA, Riedel C, Scheidt AV, Herzog L, Krause M, et al. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials. 2015;45:46–55. https://doi.org/10.1016/j.biomaterials.2014.12.024.

Article  CAS  PubMed  Google Scholar 

Carpentier VT, Wong J, Yeap Y, Gan C, Sutton-Smith P, Badiei A, et al. Increased proportion of hypermineralized osteocyte lacunae in osteoporotic and osteoarthritic human trabecular bone: Implications for bone remodeling. Bone. 2012;50(3):688–94. https://doi.org/10.1016/j.bone.2011.11.021.

Article  PubMed  Google Scholar 

Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 2010;9(6):1065–75. https://doi.org/10.1111/j.1474-9726.2010.00633.x.

Article  CAS  PubMed  Google Scholar 

Boskey AL. Bone mineralization. In: Cowin SC, editor. Bone mechanics handbook. Boca Raton: CRC Press; 2001. p. 5/1-5/33.

Landis WJ, Song MJ, Leith A, McEwen L, McEwen BF. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol. 1993;110(1):39–54. https://doi.org/10.1006/jsbi.1993.1003.

Article  CAS  PubMed  Google Scholar 

Milovanovic P, Potocnik J, Stoiljkovic M, Djonic D, Nikolic S, Neskovic O, et al. Nanostructure and mineral composition of trabecular bone in the lateral femoral neck: Implications for bone fragility in elderly women. Acta Biomaterialia. 2011;7(9):3446–51.

Article  PubMed  Google Scholar 

Marotti G, Farneti D, Remaggi F, Tartari F. Morphometric investigation on osteocytes in human auditory ossicles. Ann Anat. 1998;180(5):449–53. https://doi.org/10.1016/s0940-9602(98)80106-4.

Article  CAS  PubMed  Google Scholar 

Rolvien T, Schmidt FN, Milovanovic P, Jähn K, Riedel C, Butscheidt S, et al. Early bone tissue aging in human auditory ossicles is accompanied by excessive hypermineralization, osteocyte death and micropetrosis. Sci Rep. 2018;8(1):1920. https://doi.org/10.1038/s41598-018-19803-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blouin S, Misof BM, Mähr M, Fratzl-Zelman N, Roschger P, Lueger S, et al. Osteocyte lacunae in transiliac bone biopsy samples across life span. Acta Biomater. 2023;157:275–87. https://doi.org/10.1016/j.actbio.2022.11.051.

Article  CAS  PubMed  Google Scholar 

Rolvien T, Milovanovic P, Schmidt FN, von Kroge S, Wölfel EM, Krause M, et al. Long-term immobilization in elderly females causes a specific pattern of cortical bone and osteocyte deterioration different from postmenopausal osteoporosis. J Bone Min Res. 2020. https://doi.org/10.1002/jbmr.3970.10.1002/jbmr.3970.

Article  Google Scholar 

Maycas M, McAndrews KA, Sato AY, Pellegrini GG, Brown DM, Allen MR, et al. PTHrP-derived peptides restore bone mass and strength in diabetic mice: Additive effect of mechanical loading. J Bone Min Res. 2017;32(3):486–97. https://doi.org/10.1002/jbmr.3007.

Article  CAS  Google Scholar 

Portal-Núñez S, Lozano D, Fernández de Castro L, de Gortázar AR, Nogués X, Esbrit P. Alterations of the Wnt/β-catenin pathway and its target genes for the N- and C-terminal domains of parathyroid hormone-related protein in bone from diabetic mice. FEBS Letters. 2010;584(14):3095-100. https://doi.org/10.1016/j.febslet.2010.05.047.

Cirovic A, Jadzic J, Djukic D, Djonic D, Zivkovic V, Nikolic S, et al. Increased cortical porosity, reduced cortical thickness, and reduced trabecular and cortical microhardness of the superolateral femoral neck confer the increased hip fracture risk in individuals with type 2 diabetes. Calcif Tissue Int. 2022;111(5):457–65. https://doi.org/10.1007/s00223-022-01007-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cirovic A, Vujacic M, Petrovic B, Cirovic A, Zivkovic V, Nikolic S, et al. Vascular complications in individuals with type 2 diabetes mellitus additionally increase the risk of femoral neck fractures due to deteriorated trabecular microarchitecture. Calcif Tissue Int. 2022;110(1):65–73. https://doi.org/10.1007/s00223-021-00894-5.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif