Neuronal dysfunction caused by FUSR521G promotes ALS-associated phenotypes that are attenuated by NF-κB inhibition

Lomen-Hoerth C, Anderson T, Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59(7):1077–1079

Article  PubMed  Google Scholar 

Strong MJ et al (2017) Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 18(3–4):153–174

Article  PubMed  PubMed Central  Google Scholar 

Benbrika S et al (2019) Cognitive, emotional and psychological manifestations in amyotrophic lateral sclerosis at baseline and overtime: a review. Front Neurosci 13:951

Article  PubMed  PubMed Central  Google Scholar 

Lipton AM, White CL 3rd, Bigio EH (2004) Frontotemporal lobar degeneration with motor neuron disease-type inclusions predominates in 76 cases of frontotemporal degeneration. Acta Neuropathol 108(5):379–385

Article  PubMed  Google Scholar 

Renton AE et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72(2):257–268

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeJesus-Hernandez M et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72(2):245–256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neumann M et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133

Article  CAS  PubMed  Google Scholar 

Arai T et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611

Article  CAS  PubMed  Google Scholar 

Vance C et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323(5918):1208–1211

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kwiatkowski TJ Jr et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208

Article  CAS  PubMed  Google Scholar 

Neumann M et al (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132(Pt 11):2922–2931

Article  PubMed  PubMed Central  Google Scholar 

Gelon PA, Dutchak PA, Sephton CF (2022) Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 15:1000183

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Langenhove T et al (2010) Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology 74(5):366–371

Article  PubMed  Google Scholar 

Huey ED et al (2012) FUS and TDP43 genetic variability in FTD and CBS. Neurobiol Aging 33(5):1016.e9–17

Article  CAS  PubMed  Google Scholar 

Munoz DG et al (2009) FUS pathology in basophilic inclusion body disease. Acta Neuropathol 118(5):617–627

Article  CAS  PubMed  Google Scholar 

Suzuki N et al (2012) FUS/TLS-immunoreactive neuronal and glial cell inclusions increase with disease duration in familial amyotrophic lateral sclerosis with an R521C FUS/TLS mutation. J Neuropathol Exp Neurol 71(9):779–788

Article  CAS  PubMed  Google Scholar 

Svetoni F, Frisone P, Paronetto MP (2016) Role of FET proteins in neurodegenerative disorders. RNA Biol 13(11):1089–1102

Article  PubMed  PubMed Central  Google Scholar 

Nicolas G et al (2022) A postzygotic de novo NCDN mutation identified in a sporadic FTLD patient results in neurochondrin haploinsufficiency and altered FUS granule dynamics. Acta Neuropathol Commun 10(1):20

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seelaar H et al (2010) Frequency of ubiquitin and FUS-positive, TDP-43-negative frontotemporal lobar degeneration. J Neurol 257(5):747–753

Article  CAS  PubMed  Google Scholar 

Hammer RP Jr, Tomiyasu U, Scheibel AB (1979) Degeneration of the human Betz cell due to amyotrophic lateral sclerosis. Exp Neurol 63(2):336–46

Article  PubMed  Google Scholar 

Horoupian DS et al (1984) Dementia and motor neuron disease: morphometric, biochemical, and Golgi studies. Ann Neurol 16(3):305–313

Article  CAS  PubMed  Google Scholar 

Genc B et al (2017) Apical dendrite degeneration, a novel cellular pathology for Betz cells in ALS. Sci Rep 7:41765

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrer I et al (1991) Dementia of frontal lobe type and motor neuron disease. A Golgi study of the frontal cortex. J Neurol Neurosurg Psychiatry 54(10):932–4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kato T, Hirano A, Donnenfeld H (1987) A Golgi study of the large anterior horn cells of the lumbar cords in normal spinal cords and in amyotrophic lateral sclerosis. Acta Neuropathol 75(1):34–40

Article  CAS  PubMed  Google Scholar 

Henstridge CM et al (2018) Synapse loss in the prefrontal cortex is associated with cognitive decline in amyotrophic lateral sclerosis. Acta Neuropathol 135(2):213–226

Article  CAS  PubMed  Google Scholar 

Sasaki S, Maruyama S (1994) Decreased synaptophysin immunoreactivity of the anterior horns in motor neuron disease. Acta Neuropathol 87(2):125–128

Article  CAS  PubMed  Google Scholar 

Liu X, Erikson C, Brun A (1996) Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dementia 7(3):128–134

CAS  PubMed  Google Scholar 

Ferrer I (1999) Neurons and their dendrites in frontotemporal dementia. Dement Geriatr Cogn Disord 10(Suppl 1):55–60

Article  PubMed  Google Scholar 

Lipton AM et al (2001) Contribution of asymmetric synapse loss to lateralizing clinical deficits in frontotemporal dementias. Arch Neurol 58(8):1233–1239

Article  CAS  PubMed  Google Scholar 

Brun A, Liu X, Erikson C (1995) Synapse loss and gliosis in the molecular layer of the cerebral cortex in Alzheimer’s disease and in frontal lobe degeneration. Neurodegeneration 4(2):171–177

Article  CAS  PubMed  Google Scholar 

Laszlo ZI et al (2022) Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex. Acta Neuropathol Commun 10(1):156

Article  CAS  PubMed  PubMed Central  Google Scholar 

Umoh ME et al (2018) A proteomic network approach across the ALS-FTD disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Mol Med 10(1):48–62

Article  CAS  PubMed  Google Scholar 

Iridoy MO et al (2018) Neuroanatomical quantitative proteomics reveals common pathogenic biological routes between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Int J Mol Sci 20(1):4

Article  PubMed  PubMed Central  Google Scholar 

Martins-de-Souza D et al (2012) Proteomic analysis identifies dysfunction in cellular transport, energy, and protein metabolism in different brain regions of atypical frontotemporal lobar degeneration. J Proteome Res 11(4):2533–2543

Article  CAS  PubMed  Google Scholar 

Malpetti M et al (2021) Synaptic density in carriers of C9orf72 mutations: a [(11) C]UCB-J PET study. Ann Clin Transl Neurol 8(7):1515–1523

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lall D et al (2021) C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. Neuron 109(14):2275–2291

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu LS et al (2019) Transcriptomopathies of pre- and post-symptomatic frontotemporal dementia-like mice with TDP-43 depletion in forebrain neurons. Acta Neuropathol Commun 7(1):50

Article  CAS  PubMed 

留言 (0)

沒有登入
gif