Inhibitory effect of trans-tiliroside on very low-density lipoprotein secretion in HepG2 cells and mouse liver

Liu T, Zhao D, Qi Y (2022) Global trends in the epidemiology and management of dyslipidemia. J Clin Med 11:6377. https://doi.org/10.3390/jcm11216377

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moore K, Sheedy F, Fisher E (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721. https://doi.org/10.1038/nri3520

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiao YN, Zou YL, Guo SD (2022) Low-density lipoprotein particles in atherosclerosis. Front Physiol 13:931931. https://doi.org/10.3389/fphys.2022.931931

Article  PubMed  PubMed Central  Google Scholar 

Packard CJ, Demant T, Stewart JP, Bedford D, Caslake MJ, Schwertfeger G, Bedynek A, Shepherd J, Seidel D (2000) Apolipoprotein B metabolism and the distribution of VLDL and LDL subfractions. J Lipid Res 41:305–318. https://doi.org/10.1016/S0022-2275(20)32065-4

Article  CAS  PubMed  Google Scholar 

Hurt-Camejo E, Camejo G, Sartipy P (2000) Phospholipase A2 and small, dense low-density lipoprotein. Curr Opin Lipidol 11:465–471. https://doi.org/10.1097/00041433-200010000-00004

Article  CAS  PubMed  Google Scholar 

Alsaweed M (2021) Oxidative modification of lipoproteins: a potential role of oxidized small dense LDL in enhanced atherogenicity. J Pharm Res Int 33:118–140. https://doi.org/10.9734/JPRI/2021/v33i47A32997

Article  Google Scholar 

Sniderman AD, Thanassoulis G, Glavinovic T, Navar AM, Pencina M, Catapano A, Ference BA (2019) Apolipoprotein B particles and cardiovascular disease: a narrative review. JAMA Cardiol 4:1287–1295. https://doi.org/10.1001/jamacardio.2019.3780

Article  PubMed  PubMed Central  Google Scholar 

Stalenhoef AF, de Graaf J (2008) Association of fasting and nonfasting serum triglycerides with cardiovascular disease and the role of remnant-like lipoproteins and small dense LDL. Curr Opin Lipidol 19:355–361. https://doi.org/10.1097/MOL.0b013e328304b63c

Article  CAS  PubMed  Google Scholar 

Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM (1988) Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 260:1917–1921. https://doi.org/10.1001/jama.1988.03410130125037

Article  CAS  PubMed  Google Scholar 

Mikhailidis DP, Elisaf M, Rizzo M, Berneis K, Griffin B, Zambon A, Athyros V, de Graaf J, März W, Parhofer KG, Rini GB, Spinas GA, Tomkin GH, Tselepis AD, Wierzbicki AS, Winkler K, Florentin M, Liberopoulos E (2011) European panel on low density lipoprotein (LDL) subclasses: a statement on the pathophysiology, atherogenicity and clinical significance of LDL subclasses: executive summary. Curr Vasc Pharmacol 9:531–532. https://doi.org/10.2174/157016111796642698

Article  CAS  PubMed  Google Scholar 

Espinoza T, Valencia E, Quevedo R, Díaz O (2016) Physical and chemical properties importance of Rose hip (R. canina, R. rubiginosa): a review. Sci Agropecu 7:67–78. https://doi.org/10.17268/sci.agropecu.2016.01.07

Article  Google Scholar 

Cohen M (2012) Rosehip—an evidence based herbal medicine for inflammation and arthritis. Aust Fam Physician 41:495–498

PubMed  Google Scholar 

Patel S (2017) Rose hip as an underutilized functional food: evidence-based review. Trends Food Sci Technol 63:29–38. https://doi.org/10.1016/j.tifs.2017.03.001

Article  CAS  Google Scholar 

Mármol I, Sánchez-de-Diego C, Jiménez-Moreno N, Ancín-Azpilicueta C, Rodríguez-Yoldi MJ (2017) Therapeutic applications of rose hips from different Rosa species. Int J Mol Sci 18:1137. https://doi.org/10.3390/ijms18061137

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corrêa WR, Serain AF, Aranha Netto L, Marinho JVN, Arena AC, de Santana F, Aquino D, Kuraoka-Oliveira ÂM, Júnior AJ, Bernal LPT, Kassuya CAL, Salvador MJ (2018) Anti-inflammatory and antioxidant properties of the extract, tiliroside, and patuletin 3-O-β-D-glucopyranoside from Pfaffia townsendii (Amaranthaceae). Evid Based Complement Alternat Med 30:6057579. https://doi.org/10.1155/2018/6057579

Article  Google Scholar 

Sala A, Recio MC, Schinella GR, Máñez S, Giner RM, Cerdá-Nicolás M, Rosí JL (2003) Assessment of the anti-inflammatory activity and free radical scavenger activity of tiliroside. Eur J Pharmacol 461:53–61. https://doi.org/10.1016/s0014-2999(02)02953-9

Article  CAS  PubMed  Google Scholar 

Radziejewska I, Supruniuk K, Tomczyk M, Izdebska W, Borzym-Kluczyk M, Bielawska A, Bielawski K, Galicka A (2022) p-Coumaric acid, kaempferol, astragalin and tiliroside influence the expression of glycoforms in AGS gastric cancer cells. Int J Mol Sci 23:8602. https://doi.org/10.3390/ijms23158602

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han R, Yang H, Lu L, Lin L (2021) Tiliroside as a CAXII inhibitor suppresses liver cancer development and modulates E2Fs/Caspase-3 axis. Sci Rep 11:8626. https://doi.org/10.1038/s41598-021-88133-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu YH, Chen J, Wei DZ, Wang ZT, Tao XY (2009) Tyrosinase inhibitory effect and inhibitory mechanism of tiliroside from raspberry. J Enzyme Inhib Med Chem 24:1154–1160. https://doi.org/10.1080/14756360802694252

Article  CAS  PubMed  Google Scholar 

Matsuda H, Ninomiya K, Shimoda H, Yoshikawa M (2002) Hepatoprotective principles from the flowers of Tilia argentea (linden): structure requirements of tiliroside and mechanisms of action. Bioorg Med Chem 10:707–712. https://doi.org/10.1016/s0968-0896(01)00321-2

Article  CAS  PubMed  Google Scholar 

Ninomiya K, Matsuda H, Kubo M, Morikawa T, Nishida N, Yoshikawa M (2007) Potent anti-obese principle from Rosa canina: structural requirements and mode of action of trans-tiliroside. Bioorg Med Chem Lett 17:3059–3064. https://doi.org/10.1016/j.bmcl.2007.03.051

Article  CAS  PubMed  Google Scholar 

Morikawa T (2023) Pharmaceutical food science: search for bio-functional molecules obtained from natural resources to prevent and ameliorate lifestyle diseases. Chem Pharm Bull 71:756–765

Article  CAS  Google Scholar 

Morikawa T, Nagatomo A, Oka T, Miki Y, Taira N, Shibano-Kitahara M, Hori Y, Muraoka O, Ninomiya K (2019) Glucose tolerance-improving activity of helichrysoside in mice and its structural requirements for promoting glucose and lipid metabolism. Int J Mol Sci 20:6322. https://doi.org/10.3390/ijms20246322

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goto T, Teraminami A, Lee JY, Ohyama K, Funakoshi K, Kim YI, Hirai S, Uemura T, Yu R, Takahashi N, Kawada T (2012) Tiliroside, a glycosidic flavonoid, ameliorates obesity-induced metabolic disorders via activation of adiponectin signaling followed by enhancement of fatty acid oxidation in liver and skeletal muscle in obese-diabetic mice. J Nutr Biochem 23:768–776. https://doi.org/10.1016/j.jnutbio.2011.04.001

Article  CAS  PubMed  Google Scholar 

Morin B, Nichols LA, Zalasky KM, Davis JW, Manthey JA, Holland LJ (2008) The citrus flavonoids hesperetin and nobiletin differentially regulate low density lipoprotein receptor gene transcription in HepG2 liver cells. J Nutr 138:1274–1281. https://doi.org/10.1093/jn/138.7.1274

Article  CAS  PubMed  Google Scholar 

Mulvihill EE, Assini JM, Lee JK, Allister EM, Sutherland BG, Koppes JB, Sawyez CG, Edwards JY, Telford DE, Charbonneau A, St-Pierre P, Marette A, Huff MW (2011) Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance. Diabetes 60:1446–1457. https://doi.org/10.2337/db10-0589

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin Y, Vermeer MA, Bos W, van Buren L, Schuurbiers E, Miret-Catalan S, Trautwein EA (2011) Molecular structures of citrus flavonoids determine their effects on lipid metabolism in HepG2 cells by primarily suppressing apoB secretion. J Agric Food Chem 59:4496–4503. https://doi.org/10.1021/jf1044475

Article  CAS  PubMed  Google Scholar 

Khorasanian AS, Fateh ST, Gholami F, Rasaei N, Gerami H, Khayyatzadeh SS, Shiraseb F, Asbaghi O (2023) The effects of hesperidin supplementation on cardiovascular risk factors in adults: a systematic review and dose-response meta-analysis. Front Nutr 10:1177708. https://doi.org/10.3389/fnut.2023.1177708

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar R, Akhtar F, Rizvi SI (2021) Protective effect of hesperidin in Poloxamer-407 induced hyperlipidemic experimental rats. Biol Futur 72:201–210. https://doi.org/10.1007/s42977-020-00053-1

Article  CAS  PubMed  Google Scholar 

Wang X, Hasegawa J, Kitamura Y, Wang Z, Matsuda A, Shinoda W, Miura N, Kimura K (2011) Effects of hesperidin on the progression of hypercholesterolemia and fatty liver induced by high-cholesterol diet in rats. J Pharmacol Sci 117:129–138. https://doi.org/10.1254/jphs.11097fp

Article  CAS  PubMed  Google Scholar 

Shi L, Zou M, Zhou X, Wang S, Meng W, Lan Z (2023) Comparison of protective effects of hesperetin and pectolinarigenin on high-fat diet-induced hyperlipidemia and hepatic steatosis in Golden Syrian hamsters. Exp Anim 72:123–131. https://doi.org/10.1538/expanim.22-0115

Article  CAS  PubMed  Google Scholar 

Wilcox LJ, Borradaile NM, de Dreu LE, Huff MW (2001) Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res 42:725–734. https://doi.org/10.1016/S0022-2275(20)31634-5

Article  CAS 

留言 (0)

沒有登入
gif