Purple pitanga extract (Eugenia uniflora) attenuates oxidative stress induced by MPTP

Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci. ;7(3):207 – 19. https://doi.org/10.1038/nrn1868. PMID: 16495942

Ali SF, LeBel CP, Bondy SC (1992) Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology. ; Fall;13(3):637 – 48. PMID: 1475065

Amro MS et al The potential role of herbal products in the treatment of Parkinson’s Disease. Clin Ter 2018; Jan-Feb ;169 (1): e23–e33. https://doi.org/10.7417/T.2018.2050. PMID: 29446788

Blesa J et al (2015) Oxidative stress and Parkinson’s Disease. Frente Neuroanat 9:91. https://doi.org/10.3389/fnana.2015.00091

Article  CAS  Google Scholar 

Bloem BR, Okun MS, Klein C. (2021) Parkinson’s disease. The Lancet Jun 12;397(10291):2284–303. https://doi.org/10.1016/S0140-6736(21)00218-X

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. May 7;72:248 – 54. PMID: 942051 https://doi.org/10.1006/abio.1976.9999

Article  PubMed  Google Scholar 

Brandão R, Santos FW, Oliveira R et al (2009) Involvement of non-enzymatic antioxidant defenses in the protective effect of diphenyl diselenide on testicular damage induced by cadmium in mice. J Trace Elem Med Biol 23:324–333

Article  PubMed  Google Scholar 

Cao L et al (2021) Anti–Na+/K+–ATPase immunotherapy ameliorates α-synuclein pathology through activation of Na+/K+–ATPase α1–dependent autophagy. Science Advances. ;7: eabc5062 Jan27. https://doi.org/10.1126/sciadv.abc5062

Celli GB, Pereira-Netto AB, Beta T (2011) Comparative analysis of total phenolic content, antioxidant activity, and flavonoids profile of fruits from two varieties of Brazilian cherry (Eugenia uniflora L.) throughout the fruit developmental stages. Food Research, ; International 44, pp.2442–2451. https://doi.org/10.1016/j.foodres.2010.12.036

Da Costa Sobral KG et al (2021) Anticonvulsant activity of β-caryophyllene in association with Pregabalin in a seizure model in rats. Epilepsy Res 179:106842. https://doi.org/10.1016/j.eplepsyres.2021.106842. Epub ahead of print. PMID: 34942451

Article  CAS  PubMed  Google Scholar 

Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron. ; Sep 11;39(6):889–909. PMID: 12971891.https://doi.org/10.1016/s0896-6273(03)00568-3

Denardin CC et al (2015) Antioxidant capacity and bioactive compounds of four Brazilian native fruits. J Food Drug Anal 23:387–398. https://doi.org/10.1016/j.jfda.2015.01.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dhuria SV, Hanson LR, Frey WH 2 (2010) nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. ;99(4):1654-73. https://doi.org/10.1002/jps.21924. PMID: 19877171

Di Domenico F, Tramutola A, Butterfield DA (2017) Role of 4-hydroxy-2-nonenal (HNE) in the pathogenesis of alzheimer Disease and other selected age-related neurodegenerative disorders. Free Radic Biol Med Oct; 111:253–261 Epub 2016 Oct 24. PMID: 27789292. https://doi.org/10.1016/j.freeradbiomed.2016.10.490

Article  CAS  PubMed  Google Scholar 

Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s Disease. J Parkinsons Dis 3(4):461–491. https://doi.org/10.3233/JPD-130230PMID: 24252804; PMCID: PMC4135313

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. ;267(16):4912-6. https://doi.org/10.1046/j.1432-1327.2000.01597.x. PMID: 10931173

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys May; 82(1):70–77 PMID: 13650640. https://doi.org/10.1016/0003-9861(59)90090-6

Article  CAS  PubMed  Google Scholar 

Ferrer I, Martinez A, Blanco R, Dalfó E, Carmona M (2011) ; May;118(5):821 – 39. Epub 2010 Sep 23. PMID: 20862500. https://doi.org/10.1007/s00702-010-0482-8

Fidelis EM et al (2022) Pitanga (Eugenia uniflora L.) as a source of bioactive compounds for health benefits: a review. Arab J Chem 15:1–22. https://doi.org/10.1016/j.arabjc.2022.103691

Article  CAS  Google Scholar 

Fiske CHe, SubbaRow Y The colorimetric determination of Phosphorus. J Biol 1925 Chem 66, 375–400

Franco J, Prediger DS, Pandolfo P (2007) Antioxidant responses and lipid peroxidation following intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats: increased susceptibility of olfactory bulb. Life Sci 80:1906–1914 ISSN 0024-3205. https://doi.org/10.1016/j.lfs.2007.02.021

Article  CAS  PubMed  Google Scholar 

Gainetdinov RR et al (1997) Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J Neurochem. ;69(3):1322-5.PMID: 9282960. https://doi.org/10.1046/j.1471-4159.1997.69031322.x

Halliwell B (2001) Role of Free Radicals in the Neurodegenerative Diseases Therapeutic Implications for Antioxidant Treatment. Drugs & Aging. ; 18 (9): 685–716 1170-229X/01/0009-0685/$22.00/0

Hertog MG, Hollman PC, Katan MB (1992) Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. J Agric Food Chem 40:2379–2383

Article  CAS  Google Scholar 

Höglinger GU et al (2015) A new dopaminergic nigro-olfactory projection. Acta Neuropathol 130(3):333–348. https://doi.org/10.1007/s00401-015-1451-yEpub 2015 Jun 14. PMID: 26072303

Article  CAS  PubMed  Google Scholar 

Jiao Y, Dou Y, Lockwood G, Pani A, Jay Smeyne R (2015) Acute effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or paraquat on Core temperature in C57BL/6J mice. J Parkinsons Dis 5(2):389–401 PMID: 25633843; PMCID: PMC4923733. https://doi.org/10.3233/JPD-140424

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin Meng-meng et al (2018) A critical role of Autophagy in regulating Microglia polarization in Neurodegeneration. Front Aging Neurosci 10. https://doi.org/10.3389/fnagi.2018.00378

Kadar H et al (2014) MALDI mass spectrometry imaging of 1-methyl-4-phenylpyridinium (MPP+) in mouse brain. Neurotox Res. ;25(1):135 – 45. https://doi.org/10.1007/s12640-013-9449-5. Epub 2013 Dec 18. PMID: 24347373

Kumar AR, Kurup PA (2002) Inhibition of membrane Na+-K + ATPase activity: a common pathway in central nervous system disorders. J Assoc Physicians India. ;50:400-6. PMID: 11922232

Langston JW, Ballard P, Tetrud JW, Irwin I Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983; Feb 25;219(4587):979 – 80. PMID: 6823561. https://doi.org/10.1126/science.6823561

Li Bi Y, Ma YH, Zhang (2017) Oxidative stress and hepatotoxicity in the frog Rana chensinensis, when exposed to low doses of trichlorfon. J Environ Sci Health B 52:476–482. https://doi.org/10.1080/03601234.2017.1303321

Article  CAS  Google Scholar 

Lima VLAG et al (2005) The effects of light and freezing temperature upon the stability of purple Surinam cherry’s anthocyanins. Food Sci Technol 25(1) • Mar 2005. https://doi.org/10.1590/S0101-20612005000100015

Liu J, Lilly MN, Shapiro JI (2018) Targeting Na/K-ATPase signaling: a New Approach to control oxidative stress. Curr Pharm Des 24(3):359–364. https://doi.org/10.2174/1381612824666180110101052

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lv C et al (2012) Effect of Quercetin in the 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-Induced Mouse Model of Parkinson’s Disease. Evid Based Complement Alternat Med 2012:928643 Epub 2012 Feb 9. PMID: 22454690; PMCID: PMC3290831. https://doi.org/10.1155/2012/928643

Article  PubMed  PubMed Central  Google Scholar 

Marques NF et al (2018) Atorvastatin prevents early oxidative events and modulates inflammatory mediators in the Striatum following intranasal 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in rats. Neurotox Res 33:549–559. https://doi.org/10.1007/s12640-017-9840-8

Article  CAS  PubMed  Google Scholar 

Morales M, Munné-Bosch S, Malondialdehyde (2019) Facts and artifacts. Plant Physiol 180(3):1246–1250. https://doi.org/10.1104/pp.19.00405PMID: 31253746; PMCID: PMC6752910

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mosley RL et al (2006) Neuroinflammation, Oxidative Stress and the Pathogenesis of Parkinson's Disease. Clin Neurosci Res. 2006 Dec 6;6(5):261–281. https://doi.org/10.1016/j.cnr.2006.09.006

Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem Jun; 95(2):351–358 PMID: 36810. https://doi.org/10.1016/0003-2697(79)90738-3

Article  CAS  PubMed  Google Scholar 

Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD (2023) Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants 12(2):517. https://doi.org/10.3390/antiox12020517

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paganga G, Miller N, Rice-Evans CA (1999) The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute? Free Radic Res 30:153–162

Article  CAS  PubMed  Google Scholar 

Prediger RD et al (2006) The risk is in the air: intranasal administration of MPTP to rats reproducing clinical features of Parkinson’s Disease. Exp Neurol 202(2):391–403. https://doi.org/10.1016/j.expneurol.2006.07.001

Article  CAS  PubMed  Google Scholar 

Prediger RD et al (2011) The intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a new rodent model to test palliative and neuroprotective agents for Parkinson’s Disease. Curr Pharm Des 17(5):489–507 PMID: 21375482. https://doi.org/10.2174/138161211795164095

Article  CAS  PubMed  Google Scholar 

Rechner AR et al (2002) The metabolic fate of dietary polyphenols in humans. Free Radical Biol Med 33:220–235

Article  CAS  Google Scholar 

Sampaio TB et al (2017) Review Article: The Relevance of Intranasal Route in Parkinson’s Disease: from Physiopathological Alterations to Administration of Neurotoxins. Clin Pharmacol Transl Med. 2017; 1(2): 20–7. https://doi.org/10.31700/2572-7656.000105

Sardi JCO et al Unexplored endemic fruit species from Brazil: Antibiofilm properties, insights into mode of action, and systemic toxicity of four Eugenia Spp. Microb Pathogenesis Volume 105, Pages 280–287,ISSN; 0882–4010, https://doi.org/10.1016/j.micpath.2017.02.044

Saura J et al (1997) Biphasic and region-specific MAO-B response to aging in normal human brain. Neurobiol Aging 18:497–507

Article  CAS  PubMed  Google Scholar 

Savall ASP et al (2023) Neuroprotective effect of Eugenia uniflora against intranasal MPTP-induced memory impairments in rats: the involvement of pro-BDNF/p75NTR pathway. Life Sci 324:121711. https://doi.org/10.1016/j.lfs.2023.121711Epub 2023 Apr 23. PMID: 37088413

Article  CAS  PubMed  Google Scholar 

Schildknecht S (2017) Tipping Points and Endogenous Determinants of Nigrostriatal Degeneration by MPTP. Trends Pharmacol Sci. Jun;38(6):541–555. https://doi.org/10.1016/j.tips.2017.03.010

Skibola CF, Smith MT (2000) Potential health impacts of excessive flavonoid intake. Free Radic Biol Med 29(3–4):375–383. https://doi.org/10.1016/s0891-5849(00)00304-x

Article  CAS  PubMed  Google Scholar 

Stefanatos R, Sanz A (2017) The role of mitochondrial ROS in the aging brain. J FEBS Lett. https://doi.org/10.1002/1873-3468.12902. Nov 06

Article  Google Scholar 

Stoker TB, Barker RA (2020) Recent developments in the treatment of Parkinson’s Disease. F1000Res. ;9:F1000 Faculty Rev-862. https://doi.org/10.12688/f1000research.25634.1. PMID: 32789002; PMCID: PMC7400683

Strathearn KE, Yousef GG, Grace MH et al Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson׳s Disease. Brain Res 2014; Mar 25;1555:60–77. Epub Feb 3. PMID: 24502982; PMCID: PMC4024464. https://doi.org/10.1016/j.brainres.2014.01.047

Tambara L, de Los Santos Moraes AH, Dal Forno et al (2018) Purple pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food Che

留言 (0)

沒有登入
gif