A computational approach to analyzing the functional and structural impacts of Tripeptidyl-Peptidase 1 missense mutations in neuronal ceroid lipofuscinosis

Abbasi SSA and SW (2013) Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor Biol Med Model. https://doi.org/10.1186/1742-4682-10-63

Article  PubMed  PubMed Central  Google Scholar 

Agrahari AK, Kumar A, Siva R et al (2018) Substitution impact of highly conserved arginine residue at position 75 in GJB1 gene in association with X-linked Charcot–Marie-tooth disease: a computational study. J Theor Biol 437:305–317. https://doi.org/10.1016/j.jtbi.2017.10.028

Article  PubMed  CAS  Google Scholar 

Agrahari AK, Doss GPC, Siva R et al (2019) Molecular insights of the G2019S substitution in LRRK2 kinase domain associated with Parkinson’s disease: a molecular dynamics simulation approach. J Theor Biol 469:163–171. https://doi.org/10.1016/j.jtbi.2019.03.003

Article  PubMed  CAS  Google Scholar 

Ali SK, Sneha P, Priyadharshini Christy J et al (2017) Molecular dynamics-based analyses of the structural instability and secondary structure of the fibrinogen gamma chain protein with the D356V mutation. J Biomol Struct Dyn 35:2714–2724. https://doi.org/10.1080/07391102.2016.1229634

Article  PubMed  CAS  Google Scholar 

Amiri S, Sansom MSP, Biggin PC (2007) Molecular dynamics studies of AChBP with nicotine and carbamylcholine: the role of water in the binding pocket. Protein Eng Des Sel 20:353–359. https://doi.org/10.1093/protein/gzm029

Article  PubMed  CAS  Google Scholar 

Schulza A, Kohlschüttera A, Jonathan Minkb AS, Ruth A, Williamsd (2021) NCL diseases -clinical perspectives. 1832:1801–1806. https://doi.org/10.3390/life12010003

Ariel de Lima D, de Lima LL, de Souza NGR et al (2021) Clinical outcomes of combined anterior cruciate ligament and anterolateral ligament reconstruction: a systematic review and meta-analysis. Knee Surg Relat Res 33:1–14. https://doi.org/10.1186/s43019-021-00115-1

Article  Google Scholar 

Ashkenazy H, Abadi S, Martz E et al (2016) ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44:W344–W350. https://doi.org/10.1093/nar/gkw408

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bennett MJ, Rakheja D (2013) The neuronal ceroid-lipofuscinoses. Dev Disabil Res Rev 17:254–259. https://doi.org/10.1002/ddrr.1118

Article  PubMed  Google Scholar 

Boustany RMN (2013) Lysosomal storage diseases - the horizon expands. Nat Rev Neurol 9:583–598. https://doi.org/10.1038/nrneurol.2013.163

Article  PubMed  CAS  Google Scholar 

Capriotti E, Martelli PL, Fariselli P et al (2013) ConSurf: using evolutionary data to raise testable hypotheses about protein function. Hum Mutat 33:1–14. https://doi.org/10.1002/ijch.201200096

Article  CAS  Google Scholar 

Capriotti E, Martelli PL, Fariselli P, Casadio R (2017) Blind prediction of deleterious amino acid variations with SNPs&GO. Hum Mutat 38:1064–1071. https://doi.org/10.1002/humu.23179

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cárcel-Trullols J, Kovács AD, Pearce DA (2015) Cell biology of the NCL proteins: what they do and don’t do. Biochim Biophys Acta - Mol Basis Dis 1852:2242–2255. https://doi.org/10.1016/j.bbadis.2015.04.027

Article  CAS  Google Scholar 

Chasman D, Adams RM (2001) Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: structure-based assessment of amino acid variation. J Mol Biol 307:683–706. https://doi.org/10.1006/jmbi.2001.4510

Article  PubMed  CAS  Google Scholar 

Chen ZR, Liu DT, Meng H et al (2019) Homozygous missense TPP1 mutation associated with mild late infantile neuronal ceroid lipofuscinosis and the genotype-phenotype correlation. Seizure 69:180–185. https://doi.org/10.1016/j.seizure.2018.08.027

Article  PubMed  Google Scholar 

Choi Y, Chan AP (2015) PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745–2747. https://doi.org/10.1093/bioinformatics/btv195

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dassault RM, Villacoublay V, Becard N (2016) Dassault Systèmes Datafirst. 78946

De Baets G, Van Durme J, Reumers J et al (2012) SNPeffect 4.0: OnOnlinerediction of molecular and structural effects of protein-coding variants. Nucleic Acids Res 40:935–939. https://doi.org/10.1093/nar/gkr996

Article  CAS  Google Scholar 

Di Giacopo R, Cianetti L, Caputo V et al (2015) Protracted late infantile ceroid lipofuscinosis due to TPP1 mutations: clinical, molecular and biochemical characterization in three sibs. J Neurol Sci 356:65–71. https://doi.org/10.1016/j.jns.2015.05.021

Article  PubMed  CAS  Google Scholar 

Doss CGP, Rajith B (2012) Computational refinement of functional single nucleotide polymorphisms associated with ATM gene. PLoS ONE 7:1–11. https://doi.org/10.1371/journal.pone.0034573

Article  CAS  Google Scholar 

Eilbeck K, Quinlan A, Yandell M (2017) Settling the score: variant prioritization and mendelian disease. Nat Rev Genet 18:599–612. https://doi.org/10.1038/nrg.2017.52

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ezaki J, Takeda-Ezaki M, Kominami E (2000) Tripeptidyl peptidase I, the late infantile neuronal ceroid lipofuscinosis gene product, initiates the lysosomal degradation of subunit c of ATP synthase. J Biochem 128:509–516. https://doi.org/10.1093/oxfordjournals.jbchem.a022781

Article  PubMed  CAS  Google Scholar 

Fortuno C, James PA, Young EL et al (2018) Improved, ACMG-compliant, in silico prediction of pathogenicity for missense substitutions encoded by TP53 variants. Hum Mutat 39:1061–1069. https://doi.org/10.1002/humu.23553

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ghosh A, Corbett GT, Gonzalez FJ, Pahan K (2012) Gemfibrozil and fenofibrate, food and drug administration-approved lipid-lowering drugs, up-regulate tripeptidyl-peptidase 1 in brain cells via peroxisome proliferator-activated receptor α: implications for late infantile batten disease therapy. J Biol Chem 287:38922–38935. https://doi.org/10.1074/jbc.M112.365148

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guhaniyogi J, Sohar I, Das K et al (2009) Crystal structure and autoactivation pathway of the precursor form of human tripeptidyl-peptidase 1, the enzyme deficient in late infantile ceroid lipofuscinosis. J Biol Chem 284:3985–3997. https://doi.org/10.1074/jbc.M806943200

Article  PubMed  PubMed Central  CAS  Google Scholar 

Haltia M (2006) The neuronal ceroid-lipofuscinoses: from past to present. Biochim Biophys Acta - Mol Basis Dis 1762:850–856. https://doi.org/10.1016/j.bbadis.2006.06.010

Article  CAS  Google Scholar 

Haltia M, Goebel HH (2013) The neuronal ceroid-lipofuscinoses: a historical introduction. Biochim Biophys Acta - Mol Basis Dis 1832:1795–1800. https://doi.org/10.1016/j.bbadis.2012.08.012

Article  CAS  Google Scholar 

Helman G, Taylor LE, Walkiewicz M, et al (2021) Aberrant splicing and transcriptional activity of TPP1 result in CLN2-like disorder. Eur J Med Genet 64:104259. https://doi.org/10.1016/j.ejmg.2021.104259

Hicks S, Wheeler DA, Plon SE, Kimmel M (2011) Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Hum Mutat 32:661–668. https://doi.org/10.1002/humu.21490

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kannan P, Nanda Kumar MP, Rathinam N et al (2022) Elucidating the mutational impact in causing Niemann–pick disease type C: an in silico approach. J Biomol Struct Dyn 0:1–10. https://doi.org/10.1080/07391102.2022.2135598

Article  CAS  Google Scholar 

Kannan P, Hadeefa Begum A, Madhana Priya N et al (2023) Unravelling the relacatib activity against the CTSK proteins causing pycnodysostosis: a molecular docking and dynamics approach. J Biomol Struct Dyn 0:1–12. https://doi.org/10.1080/07391102.2023.2218927

Article  CAS  Google Scholar 

Kaplan W LT (2001) Software review Swiss-PDB viewer (Deep View). Brief Bioinform 2:195–197

Article  PubMed  CAS  Google Scholar 

Katz ML, Rustad E, Robinson GO et al (2017) Canine neuronal ceroid lipofuscinoses: promising models for preclinical testing of therapeutic interventions. Neurobiol Dis 108:277–287. https://doi.org/10.1016/j.nbd.2017.08.017

Article  PubMed  PubMed Central  CAS  Google Scholar 

Khan S, Vihinen M (2010) Performance of protein stability predictors. Hum Mutat 31:675–684. https://doi.org/10.1002/humu.21242

Article  PubMed  CAS  Google Scholar 

Kim K, Kleinman HK, Lee HJ, Pahan K (2017) Safety and potential efficacy of Gemfibrozil as a supportive treatment for children with late infantile neuronal ceroid lipofuscinosis and other lipid storage disorders. Orphanet J Rare Dis 12:1–9. https://doi.org/10.1186/s13023-017-0663-8

Article  Google Scholar 

Kohlschütter A, Schulz A, Bartsch U, Storch S (2019) Current and emerging treatment strategies for neuronal ceroid lipofuscinoses. CNS Drugs 33:315–325. https://doi.org/10.1007/s40263-019-00620-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kousi M, Lehesjoki AE, Mole SE (2012) Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 33:42–63.

留言 (0)

沒有登入
gif