How to objectively evaluate the impact of image-guided surgery technologies

Jolesz FA, Kettenbach J, Grundfest WS. Cost-effectiveness of image-guided surgery. Acad Radiol. 1998;5(Suppl 2):S428–31.

Article  PubMed  Google Scholar 

Daniel J. The X-rays. Science (80-). 1896;3(67):562–3.

Article  CAS  Google Scholar 

Sansare K, Khanna V, Karjodkar F. Early victims of X-rays: a tribute and current perception. Dentomaxillofac Radiol. 2011;40(2):123–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernigou P, Pariat J. History of internal fixation (part 1): early developments with wires and plates before World War II. Int Orthop. 2017;41(6):1273–83.

Article  PubMed  Google Scholar 

Dandy WE. Ventriculography following the injection of air into the ventricles. Ann Surg. 1918;68(1):5–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moniz E. Arterial encephalography, its importance in the localization of cerebral tumors. Rev Neurol. 1927;2:72–90.

Google Scholar 

Thomas NWD, Sinclair J. Image-guided neurosurgery: history and current clinical applications. J Med imaging Radiat Sci. 2015;46(3):331–42.

Article  PubMed  Google Scholar 

Porter ME, Teisberg EO. Redefining health care: creating value-based competition on results. Harvard business press; 2006.

Google Scholar 

Traverso LW. Technology and surgery. Surg Clin North Am. 1996;76(1):129–38.

Article  CAS  PubMed  Google Scholar 

Berwick DM, Nolan TW, Whittington J. The triple aim: care, health, and cost. Health Aff. 2008;27(3):759–69.

Article  Google Scholar 

Sikka R, Morath JM, Leape L. The quadruple aim: care, health, cost and meaning in work. BMJ Qual Saf. 2015;24(10):608–10.

Article  PubMed  Google Scholar 

Wallace S, Teisberg EO. Measuring what matters: connecting excellence, professionalism, and empathy. Brain Inj Prof. 2016;12:12–5.

Google Scholar 

O’Rourke B, Oortwijn W, Schuller T, International Joint Task Group. The new definition of health technology assessment: a milestone in international collaboration. Int J Technol Assess Health Care. 2020;36(3):187–90.

Article  PubMed  Google Scholar 

Fontrier A-M, Visintin E, Kanavos P. Similarities and differences in health technology assessment systems and implications for coverage decisions: evidence from 32 countries. PharmacoEconomics - Open. 2022;6(3):315–28.

Article  PubMed  Google Scholar 

Detsky AS. A clinician’s guide to cost-effectiveness analysis. Ann Intern Med. 1990;113(2):147.

Article  CAS  PubMed  Google Scholar 

Cowling T, Nayakarathna R, Wills AL, Tankala D, Paul Roc N, Barakat S. Early access for innovative oncology medicines: a different story in each nation. J Med Econ. 2023;26(1):944–53.

Article  PubMed  Google Scholar 

Cangelosi M, Chahar A, Eggington S. Evolving use of health technology assessment in medical device procurement- global systematic review: an ISPOR special interest group report. Value Health. 2023;26(11):1581–1589.

Hyeraci G, Trippoli S, Rivano M, Messori A. Estimation of value-based price for 48 high-technology medical devices. Cureus. 2023;15(6):e39934.

PubMed  PubMed Central  Google Scholar 

Escarce JJ. Externalities in hospitals and physician adoption of a new surgical technology: an exploratory analysis. J Health Econ. 1996;15(6):715–34.

Article  CAS  PubMed  Google Scholar 

Montgomery K, Schneller ES. Hospitals’ strategies for orchestrating selection of physician preference items. Milbank Q. 2007;85(2):307–35.

Article  PubMed  PubMed Central  Google Scholar 

Lettieri E, Masella C. Priority setting for technology adoption at a hospital level: Relevant issues from the literature. Health Policy. 2009;90(1):81–8.

Article  PubMed  Google Scholar 

Peters TM. Image-guided surgery: from X-rays to virtual reality. Comput Methods Biomech Biomed Engin. 2000;4(1):27–57.

Article  CAS  PubMed  Google Scholar 

Nields MW. Cost-effectiveness of image-guided core needle biopsy versus surgery in diagnosing breast cancer. Acad Radiol. 1996;3:S138–40.

Article  PubMed  Google Scholar 

Bucholz RD. Introduction to journal of image guided surgery. J Image Guid Surg. 1995;1(1):1–3.

Article  CAS  PubMed  Google Scholar 

Peluso F, Gybels J. Computer calculation of two target trajectory with ‘centre of arc-target’ stereotaxic equipment. Acta Neurochir (Wien). 1969;21(2–3):173–80.

Article  CAS  PubMed  Google Scholar 

Thompson CJ, Bertrand G. A computer program to aid the neurosurgeon to locate probes used during stereotaxic surgery on deep cerebral structures. Comput Programs Biomed. 1972;2(4):265–76.

Article  CAS  PubMed  Google Scholar 

Herman GT, Liu HK. Three-dimensional display of human organs from computed tomograms. Comput Graph Image Process. 1979;9(1):1–21.

Article  CAS  Google Scholar 

Heilbrun MP, McDonald P, Wiker C, Koehler S, Peters W. Stereotactic localization and guidance using a machine vision technique. Stereotact Funct Neurosurg. 1992;58(1–4):94–8.

Article  CAS  PubMed  Google Scholar 

Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50.

Article  CAS  PubMed  Google Scholar 

Maciunas RJ, Galloway RL, Latimer JW. The application accuracy of stereotactic frames. Neurosurgery. 1994;35(4):682–94 (discussion 694-5).

Article  CAS  PubMed  Google Scholar 

Galloway RL, Maciunas RJ, Edwards CA. Interactive image-guided neurosurgery. IEEE Trans Biomed Eng. 1992;39(12):1226–31.

Article  PubMed  Google Scholar 

Schlöndorff G, Mösges R, Meyer-Ebrecht D, Krybus W, Adams L. CAS (computer assisted surgery). A new procedure in head and neck surgery. HNO. 1989;37(5):187–90.

PubMed  Google Scholar 

Sandeman DR, Gill SS. The impact of interactive image guided surgery: the Bristol experience with the ISG/Elekta viewing Wand. Acta Neurochir Suppl. 1995;64:54–8.

Article  CAS  PubMed  Google Scholar 

Klimek L, Mösges R, Laborde G, Korves B. Computer-assisted image-guided surgery in pediatric skull-base procedures. J Pediatr Surg. 1995;30(12):1673–6.

Article  CAS  PubMed  Google Scholar 

Olivier A, Alonso-Vanegas M, Comeau R, Peters TM. Image-guided surgery of epilepsy. Neurosurg Clin N Am. 1996;7(2):229–43.

Article  CAS  PubMed  Google Scholar 

Olson JJ, Shepherd S, Bakay RA. The EasyGuide Neuro image-guided surgery system. Neurosurgery. 1997;40(5):1092–6.

Article  CAS  PubMed  Google Scholar 

Rohling R, Munger P, Hollerbach JM, Peter T. Comparison of relative accuracy between a mechanical and an optical position tracker for image-guided neurosurgery. J Image Guid Surg. 1995;1(1):30–4.

Article  CAS  PubMed  Google Scholar 

Hummel J, Figl M, Kollmann C, Bergmann H, Birkfellner W. Evaluation of a miniature electromagnetic position tracker. Med Phys. 2002;29(10):2205–12.

Article  PubMed  Google Scholar 

Birkfellner W, Watzinger F, Wanschitz F, Ewers R, Bergmann H. Calibration of tracking systems in a surgical environment. IEEE Trans Med Imaging. 1998;17(5):737–42.

Article  CAS  PubMed  Google Scholar 

Ukimura O. Image-guided surgery in minimally invasive urology. Curr Opin Urol. 2010;20(2):136–40.

Article  PubMed  Google Scholar 

Pfeiffer M, Riediger C, Weitz J, Speidel S. Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks. Int J Comput Assist Radiol Surg. 2019;14(7):1147–55.

Article  PubMed  Google Scholar 

Smith JS, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26(8):1338–45.

Article  PubMed  Google Scholar 

Sasagawa T. Rate and factors associated with misplacement of percutaneous pedicle screws in the thoracic spine. Spine Surg Relat Res. 2023;7(2):155–60.

Article  PubMed 

留言 (0)

沒有登入
gif