Wang P, Zhou H, Han G, Ni Q, Dai S, Huang J, et al. Assessment of the value of adjuvant radiotherapy for treatment of gastric adenocarcinoma based on pattern of post-surgical progression. World J Surg Oncol. 2021;19:205. https://doi.org/10.1186/s12957-021-02304-4.
Article PubMed PubMed Central Google Scholar
Kammerer-Jacquet SF, Deleuze A, Saout J, Mathieu R, Laguerre B, Verhoest G, et al. Targeting the PD-1/PD-L1 pathway in renal cell carcinoma. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20071692.
Luo L, Lv M, Zhuang X, Zhang Q, Qiao T. Irradiation increases the immunogenicity of Lung cancer cells and irradiation-based Tumor cell vaccine elicits tumor-specific T cell responses in vivo. OncoTargets and Therapy. 2019;12:3805–15. https://doi.org/10.2147/ott.S197516.
Article CAS PubMed PubMed Central Google Scholar
Cheng Y, Dong Y, Hou Q, Wu J, Zhang W, Tian H, et al. The protective effects of XH-105 against radiation-induced intestinal injury. J Cell Mol Med. 2019;23:2238–47. https://doi.org/10.1111/jcmm.14159.
Article CAS PubMed PubMed Central Google Scholar
Fallah J, Agrawal S, Gittleman H, Fiero MH, Subramaniam S, John C, et al. FDA approval Summary: Lutetium Lu 177 Vipivotide Tetraxetan for patients with metastatic castration-resistant Prostate Cancer. Clin Cancer Res. 2023;29:1651–7. https://doi.org/10.1158/1078-0432.Ccr-22-2875.
Article CAS PubMed PubMed Central Google Scholar
O’Donoghue JA, Bardiès M, Wheldon TE. Relationships between Tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nuclear Medicine: Official Publication Soc Nuclear Med. 1995;36:1902–9.
Hindié E, Zanotti-Fregonara P, Quinto MA, Morgat C, Champion C. Dose deposits from 90Y, 177Lu, 111In, and 161 Tb in Micrometastases of various sizes: implications for Radiopharmaceutical Therapy. Journal of nuclear medicine: official publication. Soc Nuclear Med. 2016;57:759–64. https://doi.org/10.2967/jnumed.115.170423.
Türeci O, Koslowski M, Helftenbein G, Castle J, Rohde C, Dhaene K, et al. Claudin-18 gene structure, regulation, and expression is evolutionary conserved in mammals. Gene. 2011;481:83–92. https://doi.org/10.1016/j.gene.2011.04.007.
Article CAS PubMed Google Scholar
Sahin U, Koslowski M, Dhaene K, Usener D, Brandenburg G, Seitz G, et al. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin Cancer Res. 2008;14:7624–34. https://doi.org/10.1158/1078-0432.Ccr-08-1547.
Article CAS PubMed Google Scholar
Baek JH, Park DJ, Kim GY, Cheon J, Kang BW, Cha HJ, et al. Clinical implications of Claudin18.2 expression in patients with gastric Cancer. Anticancer Res. 2019;39:6973–9. https://doi.org/10.21873/anticanres.13919.
Article CAS PubMed Google Scholar
Kyuno D, Takasawa A, Takasawa K, Ono Y, Aoyama T, Magara K, et al. Claudin-18.2 as a therapeutic target in cancers: cumulative findings from basic research and clinical trials. Tissue Barriers. 2022;10:1967080. https://doi.org/10.1080/21688370.2021.1967080.
Article CAS PubMed Google Scholar
Shitara K, Lordick F, Bang YJ, Enzinger P, Ilson D, Shah MA, et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial. Lancet (London England). 2023;401:1655–68. https://doi.org/10.1016/s0140-6736(23)00620-7.
Article CAS PubMed Google Scholar
Sahin U, Türeci Ö, Manikhas G, Lordick F, Rusyn A, Vynnychenko I, et al. FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann Oncol. 2021;32:609–19. https://doi.org/10.1016/j.annonc.2021.02.005.
Article CAS PubMed Google Scholar
Lordick F, Al-Batran SE, Ganguli A, Morlock R, Sahin U, Türeci Ö. Patient-reported outcomes from the phase II FAST trial of zolbetuximab plus EOX compared to EOX alone as first-line treatment of patients with metastatic CLDN18.2 + gastroesophageal adenocarcinoma. Gastric cancer: Official Journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association. 2021;24:721–30. https://doi.org/10.1007/s10120-020-01153-6.
Article CAS PubMed Google Scholar
Hristodorov D, Fischer R, Linden L. With or without sugar? (A)glycosylation of therapeutic antibodies. Mol Biotechnol. 2013;54:1056–68. https://doi.org/10.1007/s12033-012-9612-x.
Article CAS PubMed Google Scholar
Wei W, Liu Q, Jiang D, Zhao H, Kutyreff CJ, Engle JW et al. Tissue factor-targeted ImmunoPET imaging and Radioimmunotherapy of anaplastic thyroid Cancer. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2020;7:1903595. https://doi.org/10.1002/advs.201903595.
Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15:347–60. https://doi.org/10.1038/nrc3925.
Article CAS PubMed PubMed Central Google Scholar
Green DJ, O’Steen S, Lin Y, Comstock ML, Kenoyer AL, Hamlin DK, et al. CD38-bispecific antibody pretargeted radioimmunotherapy for Multiple Myeloma and other B-cell malignancies. Blood. 2018;131:611–20. https://doi.org/10.1182/blood-2017-09-807610.
Article CAS PubMed PubMed Central Google Scholar
Cheal SM, Xu H, Guo HF, Patel M, Punzalan B, Fung EK, et al. Theranostic pretargeted radioimmunotherapy of internalizing solid Tumor antigens in human Tumor xenografts in mice: curative treatment of HER2-positive breast carcinoma. Theranostics. 2018;8:5106–25. https://doi.org/10.7150/thno.26585.
Article CAS PubMed PubMed Central Google Scholar
Cheal SM, McDevitt MR, Santich BH, Patel M, Yang G, Fung EK, et al. Alpha radioimmunotherapy using (225)Ac-proteus-DOTA for solid tumors - safety at curative doses. Theranostics. 2020;10:11359–75. https://doi.org/10.7150/thno.48810.
Article CAS PubMed PubMed Central Google Scholar
Hennrich U, Eder M. [(177)Lu]Lu-PSMA-617 (Pluvicto(TM)): the first FDA-Approved Radiotherapeutical for treatment of Prostate Cancer. Pharmaceuticals (Basel Switzerland). 2022;15. https://doi.org/10.3390/ph15101292.
Schuchardt C, Zhang J, Kulkarni HR, Chen X, Müller D, Baum RP. Prostate-specific membrane Antigen Radioligand Therapy using (177)Lu-PSMA I&T and (177)Lu-PSMA-617 in patients with metastatic castration-resistant Prostate Cancer: comparison of Safety, Biodistribution, and Dosimetry. Journal of nuclear medicine: official publication. Soc Nuclear Med. 2022;63:1199–207. https://doi.org/10.2967/jnumed.121.262713.
Chen Y, Hou X, Li D, Ding J, Liu J, Wang Z, et al. Development of a CLDN18.2-targeting immuno-PET probe for non-invasive imaging in gastrointestinal tumors. J Pharm Anal. 2023;13:367–75. https://doi.org/10.1016/j.jpha.2023.02.011.
Article PubMed PubMed Central Google Scholar
Teng F, Gu Y, Chai H, Guo H, Li H, Wu X, et al. Abstract 5183: the preclinical characterization of TST001, a novel humanized anti-claudin18.2 mAb with enhanced binding affinity and anti-tumor activity. Cancer Res. 2020;80:5183–. https://doi.org/10.1158/1538-7445.AM2020-5183.
Niimi T, Nagashima K, Ward JM, Minoo P, Zimonjic DB, Popescu NC, et al. claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol Cell Biol. 2001;21:7380–90. https://doi.org/10.1128/mcb.21.21.7380-7390.2001.
Article CAS PubMed PubMed Central Google Scholar
Wang S, Qi C, Ding J, Li D, Zhang M, Ji C, et al. First-in-human CLDN18.2 functional diagnostic pet imaging of digestive system Neoplasms enables whole-body target mapping and lesion detection. Eur J Nucl Med Mol Imaging. 2023. https://doi.org/10.1007/s00259-023-06234-z.
Article PubMed PubMed Central Google Scholar
Wei W, Zhang D, Zhang Y, Li L, Jin Y, An S et al. Development and comparison of (68)Ga/(18)F/(64)Cu-labeled nanobody tracers probing Claudin18.2. Molecular therapy oncolytics. 2022;27:305–14. https://doi.org/10.1016/j.omto.2022.11.003.
Comments (0)