Ambinder RF, Xian RR. Sir Michael Anthony Epstein (1921–2024). Science (New York, NY). 2024;384(6693):274. https://doi.org/10.1126/science.adp2961.
Yu H, Robertson ES. Epstein-Barr Virus History and Pathogenesis Viruses. 2023;15(3):714. https://doi.org/10.3390/v15030714.
Article PubMed CAS Google Scholar
Crawford DH. Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci. 2001;356(1408):461–73. https://doi.org/10.1098/rstb.2000.0783.
Article PubMed PubMed Central CAS Google Scholar
Wong Y, Meehan MT, Burrows SR, Doolan DL, Miles JJ. Estimating the global burden of Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol. 2022;148(1):31–46. https://doi.org/10.1007/s00432-021-03824-y.
Perri F, Sabbatino F, Ottaiano A, Fusco R, Caraglia M, Cascella M, et al. Impact of Epstein Barr Virus Infection on Treatment Opportunities in Patients with Nasopharyngeal Cancer. Cancers. 2023;15(5):1626. https://doi.org/10.3390/cancers15051626.
Article PubMed PubMed Central CAS Google Scholar
Jangra S, Yuen K-S, Botelho MG, Jin D-Y. Epstein-Barr Virus and Innate Immunity: Friends or Foes? Microorganisms. 2019;7(6):183. https://doi.org/10.3390/microorganisms7060183.
Article PubMed PubMed Central CAS Google Scholar
Kanda T. EBV-Encoded Latent Genes. Adv Exp Med Biol. 2018;1045:377–94. https://doi.org/10.1007/978-981-10-7230-7_17.
Article PubMed CAS Google Scholar
Yates J, Warren N, Reisman D, Sugden B. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A. 1984;81(12):3806–10. https://doi.org/10.1073/pnas.81.12.3806.
Article PubMed PubMed Central CAS Google Scholar
Mei Y, Messick TE, Dheekollu J, Kim HJ, Molugu S, Muñoz LJC, et al. Cryo-EM Structure and Functional Studies of EBNA1 Binding to the Family of Repeats and Dyad Symmetry Elements of Epstein-Barr Virus oriP. J Virol. 2022;96(17):e0094922. https://doi.org/10.1128/jvi.00949-22.
Article PubMed CAS Google Scholar
Norseen J, Thomae A, Sridharan V, Aiyar A, Schepers A, Lieberman PM. RNA-dependent recruitment of the origin recognition complex. EMBO J. 2008;27(22):3024–35. https://doi.org/10.1038/emboj.2008.221.
Article PubMed PubMed Central CAS Google Scholar
Lieberman PM. Chromatin Structure of Epstein-Barr Virus Latent Episomes. Curr Top Microbiol Immunol. 2015;390(Pt 1):71–102. https://doi.org/10.1007/978-3-319-22822-8_5.
Article PubMed CAS Google Scholar
Jenkins PJ, Binné UK, Farrell PJ. Histone acetylation and reactivation of Epstein-Barr virus from latency. J Virol. 2000;74(2):710–20. https://doi.org/10.1128/jvi.74.2.710-720.2000.
Article PubMed PubMed Central CAS Google Scholar
Khanna R, Burrows SR. Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol. 2000;54:19–48. https://doi.org/10.1146/annurev.micro.54.1.19.
Article PubMed CAS Google Scholar
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016;15(9):2038–49. https://doi.org/10.1016/j.celrep.2016.04.085.
Article PubMed PubMed Central CAS Google Scholar
Morgan SM, Tanizawa H, Caruso LB, Hulse M, Kossenkov A, Madzo J, et al. The three-dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated by PARP1 enzymatic activity. Nat Commun. 2022;13(1):187. Recent studies have found that PARP regulates EBV genome structure and gene expression.
Maestri D, Napoletani G, Kossenkov A, Preston-Alp S, Caruso LB, Tempera I. The three-dimensional structure of the EBV genome plays a crucial role in regulating viral gene expression in EBVaGC. Nucleic Acids Res. 2023;51(22):12092–110. https://doi.org/10.1093/nar/gkad936.
Article PubMed PubMed Central CAS Google Scholar
Wang L, Laing J, Yan B, Zhou H, Ke L, Wang C, et al. Epstein-Barr Virus Episome Physically Interacts with Active Regions of the Host Genome in Lymphoblastoid Cells. J Virol. 2020;94(24). https://doi.org/10.1128/jvi.01390-20.
Kim KD, Tanizawa H, De Leo A, Vladimirova O, Kossenkov A, Lu F, et al. Epigenetic specifications of host chromosome docking sites for latent Epstein-Barr virus. Nat Commun. 2020;11(1):877. https://doi.org/10.1038/s41467-019-14152-8.
Article PubMed PubMed Central CAS Google Scholar
Wang Y, Du S, Zhu C, Wang C, Yu N, Lin Z, et al. STUB1 is targeted by the SUMO-interacting motif of EBNA1 to maintain Epstein-Barr Virus latency. PLoS Pathog. 2020;16(3):e1008447. https://doi.org/10.1371/journal.ppat.1008447.
Article PubMed PubMed Central CAS Google Scholar
Holowaty MN, Sheng Y, Nguyen T, Arrowsmith C, Frappier L. Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP. J Biol Chem. 2003;278(48):47753–61. https://doi.org/10.1074/jbc.M307200200.
Article PubMed CAS Google Scholar
Xin S, Du S, Liu L, Xie Y, Zuo L, Yang J, et al. Epstein-Barr Virus Nuclear Antigen 1 Recruits Cyclophilin A to Facilitate the Replication of Viral DNA Genome. Front Microbiol. 2019;10:2879. https://doi.org/10.3389/fmicb.2019.02879.
Article PubMed PubMed Central Google Scholar
Dheekollu J, Wiedmer A, Ayyanathan K, Deakyne JS, Messick TE, Lieberman PM. Cell-cycle-dependent EBNA1-DNA crosslinking promotes replication termination at oriP and viral episome maintenance. Cell. 2021;184(3):643-54.e13. https://doi.org/10.1016/j.cell.2020.12.022.
Article PubMed PubMed Central CAS Google Scholar
Liu CD, Lee HL, Peng CW. B Cell-Specific Transcription Activator PAX5 Recruits p300 To Support EBNA1-Driven Transcription. J Virol. 2020;94(7). https://doi.org/10.1128/jvi.02028-19.
Ding W, Wang C, Narita Y, Wang H, Leong MML, Huang A, et al. The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines. J Virol. 2022;96(18):e0073922. https://doi.org/10.1128/jvi.00739-22.
Article PubMed CAS Google Scholar
Lupey-Green LN, Caruso LB, Madzo J, Martin KA, Tan Y, Hulse M, et al. PARP1 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type. J Virol. 2018;92(18). https://doi.org/10.1128/jvi.00755-18.
Lupey-Green LN, Moquin SA, Martin KA, McDevitt SM, Hulse M, Caruso LB, et al. PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter. Virology. 2017;507:220–30. https://doi.org/10.1016/j.virol.2017.04.006.
Article PubMed CAS Google Scholar
Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, et al. MYC Controls the Epstein-Barr Virus Lytic Switch. Mol Cell. 2020;78(4):653-69.e8. https://doi.org/10.1016/j.molcel.2020.03.025.
Article PubMed PubMed Central CAS Google Scholar
Li S, Yang L, Li Y, Yue W, Xin S, Li J, et al. Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling. Microbiol Spectr. 2023;11(2):e0123722. https://doi.org/10.1128/spectrum.01237-22.
Article PubMed CAS Google Scholar
Miller CL, Burkhardt AL, Lee JH, Stealey B, Longnecker R, Bolen JB, et al. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity. 1995;2(2):155–66. https://doi.org/10.1016/s1074-7613(95)80040-9.
Comments (0)