Update on the Regulation and Maintenance of Epstein-Barr Virus Latency

Ambinder RF, Xian RR. Sir Michael Anthony Epstein (1921–2024). Science (New York, NY). 2024;384(6693):274. https://doi.org/10.1126/science.adp2961.

Article  CAS  Google Scholar 

Yu H, Robertson ES. Epstein-Barr Virus History and Pathogenesis Viruses. 2023;15(3):714. https://doi.org/10.3390/v15030714.

Article  PubMed  CAS  Google Scholar 

Crawford DH. Biology and disease associations of Epstein-Barr virus. Philos Trans R Soc Lond B Biol Sci. 2001;356(1408):461–73. https://doi.org/10.1098/rstb.2000.0783.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wong Y, Meehan MT, Burrows SR, Doolan DL, Miles JJ. Estimating the global burden of Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol. 2022;148(1):31–46. https://doi.org/10.1007/s00432-021-03824-y.

Article  PubMed  Google Scholar 

Perri F, Sabbatino F, Ottaiano A, Fusco R, Caraglia M, Cascella M, et al. Impact of Epstein Barr Virus Infection on Treatment Opportunities in Patients with Nasopharyngeal Cancer. Cancers. 2023;15(5):1626. https://doi.org/10.3390/cancers15051626.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jangra S, Yuen K-S, Botelho MG, Jin D-Y. Epstein-Barr Virus and Innate Immunity: Friends or Foes? Microorganisms. 2019;7(6):183. https://doi.org/10.3390/microorganisms7060183.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kanda T. EBV-Encoded Latent Genes. Adv Exp Med Biol. 2018;1045:377–94. https://doi.org/10.1007/978-981-10-7230-7_17.

Article  PubMed  CAS  Google Scholar 

Yates J, Warren N, Reisman D, Sugden B. A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A. 1984;81(12):3806–10. https://doi.org/10.1073/pnas.81.12.3806.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mei Y, Messick TE, Dheekollu J, Kim HJ, Molugu S, Muñoz LJC, et al. Cryo-EM Structure and Functional Studies of EBNA1 Binding to the Family of Repeats and Dyad Symmetry Elements of Epstein-Barr Virus oriP. J Virol. 2022;96(17):e0094922. https://doi.org/10.1128/jvi.00949-22.

Article  PubMed  CAS  Google Scholar 

Norseen J, Thomae A, Sridharan V, Aiyar A, Schepers A, Lieberman PM. RNA-dependent recruitment of the origin recognition complex. EMBO J. 2008;27(22):3024–35. https://doi.org/10.1038/emboj.2008.221.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lieberman PM. Chromatin Structure of Epstein-Barr Virus Latent Episomes. Curr Top Microbiol Immunol. 2015;390(Pt 1):71–102. https://doi.org/10.1007/978-3-319-22822-8_5.

Article  PubMed  CAS  Google Scholar 

Jenkins PJ, Binné UK, Farrell PJ. Histone acetylation and reactivation of Epstein-Barr virus from latency. J Virol. 2000;74(2):710–20. https://doi.org/10.1128/jvi.74.2.710-720.2000.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Khanna R, Burrows SR. Role of cytotoxic T lymphocytes in Epstein-Barr virus-associated diseases. Annu Rev Microbiol. 2000;54:19–48. https://doi.org/10.1146/annurev.micro.54.1.19.

Article  PubMed  CAS  Google Scholar 

Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016;15(9):2038–49. https://doi.org/10.1016/j.celrep.2016.04.085.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Morgan SM, Tanizawa H, Caruso LB, Hulse M, Kossenkov A, Madzo J, et al. The three-dimensional structure of Epstein-Barr virus genome varies by latency type and is regulated by PARP1 enzymatic activity. Nat Commun. 2022;13(1):187. Recent studies have found that PARP regulates EBV genome structure and gene expression.

Maestri D, Napoletani G, Kossenkov A, Preston-Alp S, Caruso LB, Tempera I. The three-dimensional structure of the EBV genome plays a crucial role in regulating viral gene expression in EBVaGC. Nucleic Acids Res. 2023;51(22):12092–110. https://doi.org/10.1093/nar/gkad936.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang L, Laing J, Yan B, Zhou H, Ke L, Wang C, et al. Epstein-Barr Virus Episome Physically Interacts with Active Regions of the Host Genome in Lymphoblastoid Cells. J Virol. 2020;94(24). https://doi.org/10.1128/jvi.01390-20.

Kim KD, Tanizawa H, De Leo A, Vladimirova O, Kossenkov A, Lu F, et al. Epigenetic specifications of host chromosome docking sites for latent Epstein-Barr virus. Nat Commun. 2020;11(1):877. https://doi.org/10.1038/s41467-019-14152-8.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang Y, Du S, Zhu C, Wang C, Yu N, Lin Z, et al. STUB1 is targeted by the SUMO-interacting motif of EBNA1 to maintain Epstein-Barr Virus latency. PLoS Pathog. 2020;16(3):e1008447. https://doi.org/10.1371/journal.ppat.1008447.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Holowaty MN, Sheng Y, Nguyen T, Arrowsmith C, Frappier L. Protein interaction domains of the ubiquitin-specific protease, USP7/HAUSP. J Biol Chem. 2003;278(48):47753–61. https://doi.org/10.1074/jbc.M307200200.

Article  PubMed  CAS  Google Scholar 

Xin S, Du S, Liu L, Xie Y, Zuo L, Yang J, et al. Epstein-Barr Virus Nuclear Antigen 1 Recruits Cyclophilin A to Facilitate the Replication of Viral DNA Genome. Front Microbiol. 2019;10:2879. https://doi.org/10.3389/fmicb.2019.02879.

Article  PubMed  PubMed Central  Google Scholar 

Dheekollu J, Wiedmer A, Ayyanathan K, Deakyne JS, Messick TE, Lieberman PM. Cell-cycle-dependent EBNA1-DNA crosslinking promotes replication termination at oriP and viral episome maintenance. Cell. 2021;184(3):643-54.e13. https://doi.org/10.1016/j.cell.2020.12.022.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu CD, Lee HL, Peng CW. B Cell-Specific Transcription Activator PAX5 Recruits p300 To Support EBNA1-Driven Transcription. J Virol. 2020;94(7). https://doi.org/10.1128/jvi.02028-19.

Ding W, Wang C, Narita Y, Wang H, Leong MML, Huang A, et al. The Epstein-Barr Virus Enhancer Interaction Landscapes in Virus-Associated Cancer Cell Lines. J Virol. 2022;96(18):e0073922. https://doi.org/10.1128/jvi.00739-22.

Article  PubMed  CAS  Google Scholar 

Lupey-Green LN, Caruso LB, Madzo J, Martin KA, Tan Y, Hulse M, et al. PARP1 Stabilizes CTCF Binding and Chromatin Structure To Maintain Epstein-Barr Virus Latency Type. J Virol. 2018;92(18). https://doi.org/10.1128/jvi.00755-18.

Lupey-Green LN, Moquin SA, Martin KA, McDevitt SM, Hulse M, Caruso LB, et al. PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter. Virology. 2017;507:220–30. https://doi.org/10.1016/j.virol.2017.04.006.

Article  PubMed  CAS  Google Scholar 

Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, et al. MYC Controls the Epstein-Barr Virus Lytic Switch. Mol Cell. 2020;78(4):653-69.e8. https://doi.org/10.1016/j.molcel.2020.03.025.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li S, Yang L, Li Y, Yue W, Xin S, Li J, et al. Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling. Microbiol Spectr. 2023;11(2):e0123722. https://doi.org/10.1128/spectrum.01237-22.

Article  PubMed  CAS  Google Scholar 

Miller CL, Burkhardt AL, Lee JH, Stealey B, Longnecker R, Bolen JB, et al. Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity. 1995;2(2):155–66. https://doi.org/10.1016/s1074-7613(95)80040-9.

Article  PubMed  CAS 

Comments (0)

No login
gif