Myeloid Cell Reservoirs: Role in HIV-Host Interplay and Strategies for Myeloid Reservoir Elimination

Andrade VM, Mavian C, Babic D, Cordeiro T, Sharkey M, Barrios L, et al. A minor population of macrophage-tropic HIV-1 variants is identified in recrudescing viremia following analytic treatment interruption. Proc Natl Acad Sci USA. 2020;117(18):9981–90. https://doi.org/10.1073/pnas.1917034117.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veenhuis RT, Abreu CM, Costa PAG, Ferreira EA, Ratliff J, Pohlenz L, et al. Monocyte-derived macrophages contain persistent latent HIV reservoirs. Nat Microbiol. 2023;8(5):833–44. https://doi.org/10.1038/s41564-023-01349-3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schiff AE, Linder AH, Luhembo SN, Banning S, Deymier MJ, Diefenbach TJ, et al. T cell-tropic HIV efficiently infects alveolar macrophages through contact with infected CD4+ T cells. Sci Rep. 2021;11(1):3890. https://doi.org/10.1038/s41598-021-82066-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui J, Meshesha M, Churgulia N, Merlo C, Fuchs E, Breakey J, Jones J, Stivers JT. Replication-competent HIV-1 in human alveolar macrophages and monocytes despite nucleotide pools with elevated dUTP. Retrovirology. 2022;19(1):21. https://doi.org/10.1186/s12977-022-00607-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganor Y, Real F, Sennepin A, Dutertre C-A, Prevedel L, Xu L, et al. HIV-1 reservoirs in urethral macrophages of patients under suppressive antiretroviral therapy. Nat Microbiol. 2019;4(4):633–44. https://doi.org/10.1038/s41564-018-0335-z.

Article  CAS  PubMed  Google Scholar 

Johnson JA, Li J-f, Politch JA, Lipscomb JT, Tino AS, DeFelice J, et al. HIV Immunocapture Reveals Particles Expressed in Semen Under Integrase Strand Transfer Inhibitor-Based Therapy Are Largely Myeloid Cell-Derived and Disparate. The Journal of Infectious Diseases 2024;230(1):78-85 https://doi.org/10.1093/infdis/jiae073.

Real F, Bomsel M. HIV infection of the genital mucosa in real time. Med Sci (Paris). 2019;35(3):209–12. https://doi.org/10.1051/medsci/2019044.

Article  PubMed  Google Scholar 

Sharova N, Swingler C, Sharkey M, Stevenson M. Macrophages archive HIV-1 virions for dissemination in trans. Embo j. 2005;24(13):2481–9. https://doi.org/10.1038/sj.emboj.7600707.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han M, Cantaloube-Ferrieu V, Xie M, Armani-Tourret M, Woottum M, Pages JC, et al. HIV-1 cell-to-cell spread overcomes the virus entry block of non-macrophage-tropic strains in macrophages. PLoS Pathog. 2022;18(5): e1010335. https://doi.org/10.1371/journal.ppat.1010335.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ladinsky MS, Khamaikawin W, Jung Y, Lin S, Lam J, An DS, et al. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. Elife. 2019;8:e46916. https://doi.org/10.7554/eLife.46916.

Article  PubMed  PubMed Central  Google Scholar 

Xie M, Leroy H, Mascarau R, Woottum M, Dupont M, Ciccone C, et al. Cell-to-Cell Spreading of HIV-1 in Myeloid Target Cells Escapes SAMHD1 Restriction. mBio. 2019;10(6):e02457. https://doi.org/10.1128/mBio.02457-19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abreu CM, Veenhuis RT, Avalos CR, Graham S, Parrilla DR, Ferreira EA, et al. Myeloid and CD4 T Cells Comprise the Latent Reservoir in Antiretroviral Therapy-Suppressed SIVmac251-Infected Macaques. mBio. 2019;10(4):e01659. https://doi.org/10.1128/mbio.01659-19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abreu CM, Veenhuis RT, Avalos CR, Graham S, Queen SE, Shirk EN, et al. Infectious Virus Persists in CD4(+) T Cells and Macrophages in Antiretroviral Therapy-Suppressed Simian Immunodeficiency Virus-Infected Macaques. J Virol. 2019;93(15):e00065. https://doi.org/10.1128/JVI.00065-19.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joseph SB, Swanstrom R. The evolution of HIV-1 entry phenotypes as a guide to changing target cells. J Leukoc Biol. 2018;103(3):421–31. https://doi.org/10.1002/jlb.2ri0517-200r.

Article  CAS  PubMed  Google Scholar 

Duncan CJ, Sattentau QJ. Viral determinants of HIV-1 macrophage tropism. Viruses. 2011;3(11):2255–79. https://doi.org/10.3390/v3112255.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Joseph SB, Arrildt KT, Swanstrom AE, Schnell G, Lee B, Hoxie JA, et al. Quantification of entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities. J Virol. 2014;88(4):1858–69. https://doi.org/10.1128/jvi.02477-13.

Article  PubMed  PubMed Central  Google Scholar 

Borrajo A, Ranazzi A, Pollicita M, Bellocchi MC, Salpini R, Mauro MV, et al. Different Patterns of HIV-1 Replication in MACROPHAGES is Led by Co-Receptor Usage. Medicina (Kaunas). 2019;55(6):29. https://doi.org/10.3390/medicina55060297.

Article  Google Scholar 

Bejarano DA, Peng K, Laketa V, Börner K, Jost KL, Lucic B, et al. HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex. Elife. 2019;8:e41800. https://doi.org/10.7554/eLife.41800.

Article  PubMed  PubMed Central  Google Scholar 

Zhong Z, Ning J, Boggs EA, Jang S, Wallace C, Telmer C, et al. Cytoplasmic CPSF6 Regulates HIV-1 Capsid Trafficking and Infection in a Cyclophilin A-Dependent Manner. mBio. 2021;12(2):e03142-20. https://doi.org/10.1128/mBio.03142-20.

Article  PubMed  PubMed Central  Google Scholar 

Zila V, Margiotta E, Turoňová B, Müller TG, Zimmerli CE, Mattei S, et al. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell. 2021;184(4):1032-46.e18. https://doi.org/10.1016/j.cell.2021.01.025.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol. 2007;177(2):329–41. https://doi.org/10.1083/jcb.200609050.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ladinsky MS, Kieffer C, Olson G, Deruaz M, Vrbanac V, Tager AM, et al. Electron Tomography of HIV-1 Infection in Gut-Associated Lymphoid Tissue. PLoS Pathog. 2014;10(1): e1003899. https://doi.org/10.1371/journal.ppat.1003899.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Castellano P, Prevedel L, Valdebenito S, Eugenin EA. HIV infection and latency induce a unique metabolic signature in human macrophages. Sci Rep. 2019;9(1):3941. https://doi.org/10.1038/s41598-019-39898-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Real F, Zhu A, Huang B, Belmellat A, Sennepin A, Vogl T, et al. S100A8-mediated metabolic adaptation controls HIV-1 persistence in macrophages in vivo. Nat Commun. 2022;13(1):5956. https://doi.org/10.1038/s41467-022-33401-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clayton KL, Mylvaganam G, Villasmil-Ocando A, Stuart H, Maus MV, Rashidian M, et al. HIV-infected macrophages resist efficient NK cell-mediated killing while preserving inflammatory cytokine responses. Cell Host Microbe. 2021;29(3):435-47.e9. https://doi.org/10.1016/j.chom.2021.01.006.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laumaea A, Marchitto L, Ding S, Beaudoin-Bussieres G, Prevost J, Gasser R, et al. Small CD4 mimetics sensitize HIV-1-infected macrophages to antibody-dependent cellular cytotoxicity. Cell Rep. 2023;42(1): 111983. https://doi.org/10.1016/j.celrep.2022.111983.

Article  CAS  PubMed 

Comments (0)

No login
gif