Molecular testing for thyroid nodules: Where are we now?

Wong R, Farrell SG, Grossmann M. Thyroid nodules: Diagnosis and management. Med J Aust. 2018;209(2):92–8.

Article  PubMed  Google Scholar 

Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

Article  PubMed  PubMed Central  Google Scholar 

Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. The 2023 Bethesda system for reporting thyroid cytopathology. Thyroid. 2023. https://doi.org/10.1089/thy.2023.0141. Epub ahead of print. PMID: 37427847.

Geramizadeh B, Bos-hagh S, Maleki Z. Cytomorphologic, imaging, molecular findings, and outcome in thyroid follicular lesion of undetermined significance/atypical cell of undetermined significance (AUS/FLUS): A mini-review. Acta Cytol. 2019;63(1):1–9.

Article  PubMed  Google Scholar 

Yassa L, Cibas ES, Benson CB, Frates MC, Doubilet PM, Gawande AA, et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer. 2007;111(6):508–16.

Article  PubMed  Google Scholar 

Durante C, Hegedüs L, Czarniecka A, Paschke R, Russ G, Schmitt F, Soares P, Solymosi T, Papini E. 2023 European Thyroid Association Clinical Practice Guidelines for thyroid nodule management. Eur Thyroid J. 2023;12(5):e230067. https://doi.org/10.1530/ETJ-23-0067. PMID: 37358008; PMCID: PMC10448590.

Charkes ND. On the prevalence of familial nonmedullary thyroid cancer in multiply affected kindreds. Thyroid. 2006;16(2):181-6. https://doi.org/10.1089/thy.2006.16.181. Erratum in: Thyroid. 2006 May;16(5):520.

Suteau V, Munier M, Briet C, Rodien P. Sex bias in differentiated thyroid cancer. Int J Mol Sci. 2021;22(23):12992.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lynch CA, Bethi M, Tang A, Lee P, Steward D, Holm TM. Thyroid nodules >4 cm with atypia of undetermined significance cytology independently associate with malignant pathology. Surgery. 2022;171(3):725–30. https://doi.org/10.1016/j.surg.2021.08.017. Epub 2021 Nov 4.

Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, Dinauer CA, Hamilton J, Hay ID, Luster M, Parisi MT, Rachmiel M, Thompson GB, Yamashita S. American thyroid association guidelines task force. management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25(7):716–59.

Ferraz C. Can current molecular tests help in the diagnosis of indeterminate thyroid nodule FNAB? Arch Endocrinol Metab. 2018;62(6):576–84.

Article  PubMed  PubMed Central  Google Scholar 

Vargas-Salas S, Martínez JR, Urra S, et al. Genetic testing for indeterminate thyroid cytology: Review and meta-analysis. Endocr Relat Cancer. 2018;25(3):R163–77.

Article  PubMed  Google Scholar 

Patel KN, Angell TE, Babiarz J, et al. Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surg. 2018;153(9):817–24.

Article  PubMed  PubMed Central  Google Scholar 

Angell TE, Heller HT, Cibas ES, Barletta JA, Kim MI, Krane JF, Marqusee E. Independent comparison of the afirma genomic sequencing classifier and gene expression classifier for cytologically indeterminate thyroid nodules. Thyroid. 2019;29(5):650–6. https://doi.org/10.1089/thy.2018.0726. Epub 2019 Mar 22. PMID: 30803388.

San Martin VT, Lawrence L, Bena J, Madhun NZ, Berber E, Elsheikh TM, Nasr CE. Real-world comparison of Afirma GEC and GSC for the assessment of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2020;105(3):dgz099. https://doi.org/10.1210/clinem/dgz099. PMID: 31665322.

Santos MTD, Buzolin AL, Gama RR, et al. Molecular classification of thyroid nodules with indeterminate cytology: Development and validation of a highly sensitive and specific new miRNA-based classifier test using fine-needle aspiration smear slides. Thyroid. 2018;28(12):1618–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santos MT, Rodrigues BM, Shizukuda S, Oliveira AF, Oliveira M, Figueiredo DLA, Melo GM, Silva RA, Fainstein C, Dos Reis GF, Corbo R, Ramos HE, Camacho CP, Vaisman F, Vaisman M. Clinical decision support analysis of a microRNA-based thyroid molecular classifier: A real-world, prospective and multicentre validation study. EBioMedicine. 2022;82:104137. https://doi.org/10.1016/j.ebiom.2022.104137. Epub 2022 Jul 1.

Labourier E, Shifrin A, Busseniers AE, et al. Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab. 2015;100(7):2743–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lupo MA, Walts AE, Sistrunk JW, Giordano TJ, Sadow PM, Massoll N, Campbell R, Jackson SA, Toney N, Narick CM, Kumar G, Mireskandari A, Finkelstein SD, Bose S. Multiplatform molecular test performance in indeterminate thyroid nodules. Diagn Cytopathol. 2020;48(12):1254–64. https://doi.org/10.1002/dc.24564. Epub 2020 Aug 7.

González HE, Martínez JR, Vargas-Salas S, et al. A 10-Gene classifier for indeterminate thyroid nodules: Development and multicenter accuracy study. Thyroid. 2017;27(8):1058–67.

Article  PubMed  PubMed Central  Google Scholar 

Zafereo M, McIver B, Vargas-Salas S, Domínguez JM, Steward DL, Holsinger FC, Kandil E, Williams M, Cruz F, Loyola S, Solar A, Roa JC, León A, Droppelman N, Lobos M, Arias T, Kong CS, Busaidy N, Grubbs EG, Graham P, Stewart J, Tang A, Wang J, Orloff L, Henríquez M, Lagos M, Osorio M, Schachter D, Franco C, Medina F, Wohllk N, Diaz RE, Veliz J, Horvath E, Tala H, Pineda P, Arroyo P, Vasquez F, Traipe E, Marín L, Miranda G, Bruce E, Bracamonte M, Mena N, González HE. A thyroid genetic classifier correctly predicts benign nodules with indeterminate cytology: two independent, multicenter, prospective validation trials. Thyroid. 2020;30(5):704–12. https://doi.org/10.1089/thy.2019.0490. Epub 2020 Feb 11.

Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L, Gooding WE, Yip L, Ferris RL, Nikiforov YE. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018;124(8):1682–90. https://doi.org/10.1002/cncr.31245. Epub 2018 Jan 18.

Desai D, Lepe M, Baloch ZW, Mandel SJ. ThyroSeq v3 for Bethesda III and IV: An institutional experience. Cancer Cytopathol. 2021;129(2):164–70. https://doi.org/10.1002/cncy.22362. Epub 2020 Oct 8.

Jug R, Foo WC, Jones C, Ahmadi S, Jiang XS. High-risk and intermediate-high-risk results from the ThyroSeq v2 and v3 thyroid genomic classifier are associated with neoplasia: Independent performance assessment at an academic institution. Cancer Cytopathol. 2020;128(8):563–9. https://doi.org/10.1002/cncy.22283. Epub 2020 Apr 27. PMID: 32339438.

Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.

Article  CAS  PubMed  Google Scholar 

Valderrabano P, Hallanger-Johnson JE, Thapa R, Wang X, McIver B. Comparison of postmarketing findings vs the initial clinical validation findings of a thyroid nodule gene expression classifier: A systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg. 2019;e191449.

Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136(2):215–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ricarte Filho JC, Kimura ET. MicroRNAs: Novel class of gene regulators involved in endocrine function and cancer. Arq Bras Endocrinol Metabol. 2006;50(6):1102–7.

Article  PubMed  Google Scholar 

Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: Genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63(7):1454–7.

CAS  PubMed  Google Scholar 

Ferraz C, Eszlinger M, Paschke R. Current state and future perspective of molecular diagnosis of fine-needle aspiration biopsy of thyroid nodules. J Clin Endocrinol Metab. 2011;96(7):2016–26.

Article  CAS  PubMed  Google Scholar 

Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94(6):2092–8.

Article  CAS  PubMed  Google Scholar 

Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

Article  Google Scholar 

Krane JF, Cibas ES, Endo M, et al. The Afirma Xpression Atlas for thyroid nodules and thyroid cancer metastases: Insights to inform clinical decision-making from a fine-needle aspiration sample. Cancer Cytopathol. 2020. https://doi.org/10.1002/cncy.22300.

Article  PubMed  PubMed Central  Google Scholar 

Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

Article  CAS  PubMed  Google Scholar 

Xing M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol. 2010;321(1):86–93.

Article  CAS  PubMed  Google Scholar 

Scheffel RS, Dora JM, Maia AL. BRAF mutations in thyroid cancer. Curr Opin Oncol. 2022;34(1):9–18.

Article  CAS  PubMed  Google Scholar 

Nikiforov YE. RET/PTC rearrangement in thyroid tumors. Endocr Pathol. 2002;13(1):3–16.

Article  CAS  PubMed  Google Scholar 

Thomas GA, Bunnell H, Cook HA, et al. High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: A strong correlation between RET/PTC3 and the solid-follicular variant. J Clin Endocrinol Metab. 1999;84(11):4232–8.

CAS  PubMed  Google Scholar 

Cordioli MI, Moraes L, Bastos AU, et al. Fusion oncogenes are the main genetic events found in sporadic papillary thyroid carcinomas from children. Thyroid. 2017;27(2):182–8.

Article  CAS  PubMed  Google Scholar 

Tavares C, Melo M, Cameselle-Teijeiro JM, Soares P, Sobrinho-Simões M. Endocrine tumours: Genetic predictors of thyroid cancer outcome. Eur J Endocrinol. 2016;174(4):R117–26.

Article  CAS  PubMed  Google Scholar 

Armstrong MJ, Yang H, Yip L, et al. PAX8/PPARγ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma. Thyroid. 2014;24(9):1369–74.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xing M. Clinical utility of RAS mutations in thyroid cancer: A blurred picture now emerging clearer. BMC Med. 2016;14:12.

Article  PubMed  PubMed Central  Google Scholar 

Garcia-Rostan G, Zhao H, Camp RL, et al. Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21(17):3226–35.

Article  CAS  PubMed  Google Scholar 

Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R143–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Melo M, da Rocha AG, Vinagre J, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(5):E754–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Bishop J, Shan Y, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20(4):603–10.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif