The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases

Tsao, C. W. et al. Heart disease and stroke statistics — 2022 update: a report from the American Heart Association. Circulation 145, e153–e639 (2022).

Article  PubMed  Google Scholar 

Lenz, A., Franklin, G. A. & Cheadle, W. G. Systemic inflammation after trauma. Injury 38, 1336–1345 (2007).

Article  PubMed  Google Scholar 

Abbate, A. et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ. Res. 126, 1260–1280 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toldo, S. & Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol. 15, 203–214 (2018).

Article  CAS  PubMed  Google Scholar 

Westman, P. C. et al. Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J. Am. Coll. Cardiol. 67, 2050–2060 (2016).

Article  PubMed  Google Scholar 

Seropian, I. M., Toldo, S., Van Tassell, B. W. & Abbate, A. Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. J. Am. Coll. Cardiol. 63, 1593–1603 (2014).

Article  CAS  PubMed  Google Scholar 

Gao, X.-M., White, D. A., Dart, A. M. & Du, X.-J. Post-infarct cardiac rupture: recent insights on pathogenesis and therapeutic interventions. Pharmacol. Ther. 134, 156–179 (2012).

Article  CAS  PubMed  Google Scholar 

Abbate, A. et al. Alterations in the interleukin-1/interleukin-1 receptor antagonist balance modulate cardiac remodeling following myocardial infarction in the mouse. PLoS ONE 6, e27923 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Savvatis, K. et al. Interleukin-23 deficiency leads to impaired wound healing and adverse prognosis after myocardial infarction. Circ. Heart Fail. 7, 161–171 (2014).

Article  CAS  PubMed  Google Scholar 

Dinarello, C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 281, 8–27 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swanson, K. V., Deng, M. & Ting, J. P.-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng, D., Liwinski, T. & Elinav, E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov. 6, 1–22 (2020).

Article  Google Scholar 

Viganò, E. et al. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes. Nat. Commun. 6, 8761 (2015).

Article  PubMed  Google Scholar 

Matikainen, S., Nyman, T. A. & Cypryk, W. Function and regulation of noncanonical caspase-4/5/11 inflammasome. J. Immunol. 204, 3063–3069 (2020).

Article  CAS  PubMed  Google Scholar 

Ma, Q. Pharmacological inhibition of the NLRP3 inflammasome: structure, molecular activation, and inhibitor-NLRP3 interaction. Pharmacol. Rev. 75, 487–520 (2023).

Article  CAS  PubMed  Google Scholar 

Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dinarello, C. A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Westermann, D. et al. Cardioprotective and anti-inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes 56, 1834–1841 (2007).

Article  CAS  PubMed  Google Scholar 

Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Santa Cruz Garcia, A. B., Schnur, K. P., Malik, A. B. & Mo, G. C. H. Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry. Nat. Commun. 13, 52 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Erickson, H. P. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 11, 32–51 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rider, P., Carmi, Y., Voronov, E. & Apte, R. N. Interleukin-1α. Semin. Immunol. 25, 430–438 (2013).

Article  CAS  PubMed  Google Scholar 

Gross, O. et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).

Article  CAS  PubMed  Google Scholar 

Merkle, S. et al. A role for caspase-1 in heart failure. Circ. Res. 100, 645–653 (2007).

Article  CAS  PubMed  Google Scholar 

Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

Article  CAS  PubMed  Google Scholar 

Magnani, L., Colantuoni, M. & Mortellaro, A. Gasdermins: new therapeutic targets in host defense, inflammatory diseases, and cancer. Front. Immunol. 13, 898298 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsuchiya, K. et al. Gasdermin D mediates the maturation and release of IL-1α downstream of inflammasomes. Cell Rep. 34, 108887 (2021).

Article  CAS  PubMed  Google Scholar 

Shao, W., Yeretssian, G., Doiron, K., Hussain, S. N. & Saleh, M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J. Biol. Chem. 282, 36321–36329 (2007).

Article  CAS  PubMed  Google Scholar 

Shen, J. et al. Caspase-1 recognizes extended cleavage sites in its natural substrates. Atherosclerosis 210, 422–429 (2010).

Article  CAS  PubMed  Google Scholar 

Downs, K. P., Nguyen, H., Dorfleutner, A. & Stehlik, C. An overview of the non-canonical inflammasome. Mol. Asp. Med. 76, 100924 (2020).

Article  CAS  Google Scholar 

Toldo, S. et al. Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovasc. Res. 105, 203–212 (2015).

Article  CAS  PubMed  Google Scholar 

Li, X. et al. NOD2 deficiency protects against cardiac remodeling after myocardial infarction in mice. Cell Physiol. Biochem. 32, 1857–1866 (2013).

Article  CAS  PubMed  Google Scholar 

Chevriaux, A. et al. Cathepsin B is required for NLRP3 inflammasome activation in macrophages, through NLRP3 interaction. Front. Cell Dev. Biol. 8, 167 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Rajamäki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Toldo, S., Mauro, A. G., Cutter, Z. & Abbate, A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia–reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 315, H1553–H1568 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi, M. NLRP3 inflammasome as a novel player in myocardial infarction. Int. Heart J. 55, 101–105 (2014).

Article  CAS  PubMed  Google Scholar 

Mezzaroma, E., Abbat

留言 (0)

沒有登入
gif